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Abstract: Both early childhood traumatic experiences and current stress increase the risk of suicidal
behaviour, in which immune activation might play a role. Previous research suggests an association
between mood disorders and P2RX7 gene encoding P2X7 receptors, which stimulate neuroinflamma-
tion. We investigated the effect of P2RX7 variation in interaction with early childhood adversities and
traumas and recent stressors on lifetime suicide attempts and current suicide risk markers. Overall,
1644 participants completed questionnaires assessing childhood adversities, recent negative life
events, and provided information about previous suicide attempts and current suicide risk-related
markers, including thoughts of ending their life, death, and hopelessness. Subjects were genotyped
for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into logistic
and linear regression models, followed by a clumping procedure to identify clumps of SNPs with
a significant main and interaction effect. We identified two significant clumps with a main effect
on current suicidal ideation with top SNPs rs641940 and rs1653613. In interaction with childhood
trauma, we identified a clump with top SNP psy_rs11615992 and another clump on hopelessness
containing rs78473339 as index SNP. Our results suggest that P2RX7 variation may mediate the effect
of early childhood adversities and traumas on later emergence of suicide risk.

Keywords: P2RX7; suicide; stress; recent life events; childhood adversities; GxE interaction;
neuroinflammation

1. Introduction

Suicide is one of the most burning psychiatric and public health concerns, claiming
more than 700,000 lives every year, and for each completed suicide, 10–20 times more
attempts happen [1]. Suicide occurs throughout the lifespan, and it is among the leading
causes of death in adolescents and young adults [1,2], and, alarmingly, it also shows a
sharply increasing tendency in these age groups and children [3]. Underpinned by an
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interplay between genetic, psychological, and environmental factors [4], suicidal behaviour
occurs along a spectrum from suicidal ideation due to the combination of pain and hope-
lessness, which escalates into planning if pain exceeds connectedness, while dispositional,
learned, and practical contributors to suicide capacity facilitate the transition from ideation
and planning to attempts at the other end of the spectrum [5]. Although suicidal thoughts
and behaviours can be reduced by psychological treatments and pharmacotherapy (lithium,
ketamine, esketamine, and clozapine) [6,7], there is no pharmacological intervention that
has a sufficient established effectiveness in preventing suicide, creating an immense unmet
need [2,8]. However, some studies suggest that drugs that have antisuicidal effects seem
to exert anti-inflammatory action as well, and certain medications acting on the immune
system may possess antisuicidal properties [4,9].

Most recent genome-wide association studies (GWAS) have suggested that polygenic
risk and specific loci, novel for suicide but previously linked to psychiatric disorders and
risk factors for depressive disorder, are associated with a higher risk of attempting sui-
cide [10,11]. Long-term and recent stressful life events, such as employment and financial
difficulties, loss of a loved one, and diagnosis with terminal or chronic illness can increase
the incidence of suicidal behaviour [12,13]. Emerging evidence suggests that childhood mal-
treatment and trauma, such as sexual, physical, and emotional abuse, neglect, or exposure
to domestic violence have particularly noxious effects and increase the rate of impulsive
and suicidal behaviour by two to seven times [14–16]. We increasingly also understand
that different types of stressors impact the immune system in various ways, also increasing
chronic low-grade inflammation [17]. Stress is also involved in neuroinflammation as, upon
stress exposure, the resident immune cells of the CNS, microglia, become activated, which
leads to the release of neuroactive molecules such as adenosine triphosphate (ATP), gluta-
mate, nitric oxide (NO), brain-derived neurotrophic factor (BDNF), and pro-inflammatory
cytokines, including TNF-α and IL-1 β [18,19].

Disturbances in the immune system, especially inflammation, play a critical role
in a range of psychiatric disorders, including schizophrenia, major depressive disorder,
or bipolar disorder [20]. Several studies have suggested that inflammatory mediators
are involved in the pathophysiology of suicide as well [9,21–26]. Elevated markers of
inflammation, such as C-reactive protein, proinflammatory cytokine IL-1β and IL-6, and
TNF-α have been reported, both in suicidal patients’ central nervous system and peripheral
tissues, regardless of their primary diagnosis, age, and gender [4,27]. Moreover, studies
utilizing various approaches provide evidence for the role of microglial cells in suicide [28],
including the report of augmentation of microglial density or priming and macrophage
recruitment in the brains of suicide victims [28–30].

Purinergic receptor P2X7 (P2X7R) is an ATP-sensitive ligand-gated nonselective cation
channel, expressed in the brain primarily by microglia [31]. Activation by a marked increase
in extracellular ATP leads to the NLRP3 inflammasome complex-mediated release of proin-
flammatory cytokines and neurotransmitters into the extracellular space [32], including
IL-1 β, IL-18 and glutamate [33]. A growing body of data indicates that pharmacologi-
cal or genetic blockade of P2X7 receptors could potentially elicit antidepressant- and/or
anxiolytic-like effects [34,35]. The potential role of P2RX7 in mood disorders is also un-
derpinned by our previous studies, where we found that variation in this gene influences
the severity of current depressive and anxiety symptoms in interaction with life stress,
mediating the effects of both early, distal stressors and recent, proximal stressors [36,37].

Although several studies, including GWAS-s [38], suggest a relationship between
chromosome 12q2431, where P2RX7 gene is located, and the development of mood disor-
ders [39,40], whose association with suicide is evident, and despite the increasing attention
focusing on the role of neuroinflammation and suicide, there have been no studies investi-
gating the involvement of the P2X7 receptor and the P2RX7 gene in suicidal behaviour. As
GWAS-s necessarily, employ overly strict p-value criteria in order to correct for the very
high number of performed statistical tests may overlook existing associations [41,42], we
decided to reduce multiple testing burden and still overcome the drawbacks of candidate
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variant studies by employing a clumping methodwhich focuses on all SNPs along a given
gene, but “clumps” together those variants which are inherited together based on linkage
disequilibrium. In our current study, we focused on the effects of variation along the
P2RX7 gene in interaction with early childhood adversities and recent negative life events
on previous lifetime suicide attempts and current markers of suicidal ideation in a large
general white European sample (Figure 1).
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Figure 1. Overview of the study focusing on variation along the P2RX7 gene in interaction with early
childhood adversities and traumas and recent life events on previous suicide attempts and markers
on current suicide risk.

2. Results
2.1. Main Effects of Variation in P2RX7 on Lifetime Suicide Attempts, Current Suicidal Ideation,
Current Hopelessness, and Current Thoughts of Death

Logistic and linear regression models on SUIC (for previous lifetime suicide attempts),
H-BSI18 (for hopelessness), and ToD-BSI21 (for thoughts of death) identified no SNPs
reaching the nominal significance threshold. However, a linear regression model on
SI-BSI03 (for current suicidal ideation) revealed some SNPs with a nominally significant
main effect, the p-values of which did not exceed the maximum threshold specified for
clumping (p = 0.001) either, thus, significant clumps could be formed. In the recessive
model, one identified clump contained 12 SNPs, with rs641940 as the top SNP and the minor
C allele as a risk allele with an allele frequency of 0.1450, while another clump contained
4 SNPs, with rs1653613 as the top SNP and the minor G allele as risk allele, the frequency of
which was 0.0214 (Figure 2). No significant clumps emerged in the additive and dominant
models for current suicidal ideation. Linear regression results on current suicidal ideation
according to the recessive model, including all P2RX7 SNPs in the NewMood database
together with quality controls results, are shown in Supplementary Table S1.
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2.2. Gene x Environment Effects of Variation in P2RX7 on Lifetime Suicide Attempts, Current
Suicidal Ideation, Current Hopelessness, and Current Thoughts of Death: Interaction with
Childhood Adversities (CHA)

Our analyses on the interaction between P2RX7 and childhood adversities on life-
time suicide attempts (SUIC), and on current thoughts of death (ToD-BSI21), yielded no
significant clumps.

Linear regression models on the interaction between P2RX7 and childhood adversities
on current suicidal ideation (SI-BSI03) yielded one significant clump, surviving correction
for multiple testing. In the dominant model, the identified clump contained two SNPs,
with psy_rs11615992 as the most significant SNP (Figure 3), and the minor G allele as a
protective allele, with an allele frequency of 0.1794. Linear regression results in interaction
with early childhood adversities and traumas (CHA) on current suicidal ideation (SI-BSI03)
according to the recessive model including all P2RX7 SNPs in the NewMood database
together with quality control results are shown in Supplementary Table S2.
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Weinberg equilibrium. MAF: minor allele frequency. Missing: missingness rate.

Linear regression models on the interaction between P2RX7 and childhood adversities
on current hopelessness (H-BSI18) yielded one clump in the additive model (Figure 4),
consisting of 29 SNPs with top SNP rs78473339 and the minor C allele as a protective
allele, with an allele frequency of 0.0546. Linear regression results in interaction with early
childhood adversities and traumas (CHA) on hopelessness (H-BSI18) according to the
recessive model including all P2RX7 SNPs in the NewMood database together with quality
control results are shown in Supplementary Table S3.

2.3. Gene x Environment Effects of Variation in P2RX7 on Lifetime Suicide Attempts, Current
Suicidal Ideation, Current Hopelessness, and Current Thoughts of Death: Interaction with Recent
Life Events (RLE)

In case of gene x environment interaction models with recent life events on Lifetime
Suicide Attempts, Current Suicidal Ideation, Current Hopelessness, and Current Thoughts
of Death, logistic and linear regression models did not yield any significant clumps.

2.4. In Silico Characterization and Functional Prediction of Identified Top SNPs

Genomic locations of significant SNPs and top SNPs identified in the clumping proce-
dure are shown in Figure 5.

For functional characterization of the identified top SNPs, we performed searches in
LitVar, dbSNP, UCSC Genome Browser and GWAS catalog database. Of the top SNPs of
each clump, rs641940 is an intergenic variant, whereas rs1653613 and rs78473339 are intron
variants with no known functions. Rs11615992 is a regulatory region variant which has
previously been associated with schizophrenia [43].

We also performed pathway analysis of the identified index variants with SNPNexus.
SNPNexus uses Reactome data to link genes involved in the observed variants. For each
pathway, a p-value is provided, taking into account all the genes associated with the
original SNP set. The identified pathways for our top significant variants (rs11615992,
rs641940, rs78473339, and rs1653613) included (1) NLRP3 inflammasome, R-HSA-844456
(p = 0.0013); (2) elevation of cytosolic Ca2+ levels, R-HSA-139853 (p = 0.0014); (3) in-
flammasomes, R-HSA-622312 (p = 0.0018); (4) purinergic signaling in leishmaniasis in-
fection, R-HSA-9660826 (p = 0.0022); (5) cell recruitment (pro-inflammatory response),
R-HSA-9664424 (p = 0.0022); (6) platelet calcium homeostasis, R-HSA-418360 (p = 0.0026);
(7) nucleotide-binding domain, leucine-rich repeat-containing receptor (NLR) signaling path-
way, R-HSA-168643 (p = 0.0050); and (8) platelet homeostasis, R-HSA-418346 (p = 0.0079).
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Figure 5. Genomic location of significant SNPs identified in the clumping procedure. (A) Significant
clumps of P2RX7 SNPs in models for main effect on current suicidal ideation (SI-BSI03) in the recessive
model; (B) significant clump of P2RX7 SNPs in interaction with early childhood adversities and
traumas (CHA) on current suicidal ideation (SI-BSI03) in the dominant model; (C) significant clump
of P2RX7 SNPs in interaction with early childhood adversities and traumas (CHA) on hopelessness
(H-BSI18) in the additive model. Darker background colour indicates lead SNPs in all panels.

3. Discussion

Our present study investigated the effects of variation in the P2RX7 gene on life-
time suicide attempts and predictors of current suicidal risk, including hopelessness [44],
thoughts of death [45], and suicidal ideation [46] in a large European general population
sample, using a clumping procedure to investigate all available variants along the gene.
We identified two clumps of variants with a main effect on current suicidal ideation (with
rs641940 and rs1653613 as top SNPs in the recessive model), while no significant effect on
lifetime suicide attempts, current hopelessness, or thoughts of death appeared. In interac-
tion with early childhood adversities and traumas, in the case of current suicidal ideation,
we identified one significant clump in a dominant model, comprising 2 SNPs with top SNP
psy_rs11615992. In the case of hopelessness, a well-established independent predictor of
suicide [44], we also identified one clump of variants interacting with childhood maltreat-
ment in an additive model, involving 29 SNPs with rs78473339 as the index SNP. We found
no significant interaction with recent negative life events for the P2RX7 gene on lifetime
suicide attempts, or any current predictors of suicide risk. Our findings, which are the first
to suggest the involvement of P2RX7 in suicidal risk factors, not only support previous
results on the potential nexus of neuroinflammation and suicidality, but also emphasise
the role of a gene which has not yet been investigated in this context. Furthermore, our
results add to our increasing understanding of mediators of the relationship between early
childhood adversities and traumas and later emerging suicide risk.

3.1. The Potential Role of Neuroinflammation, P2X7 Receptors and the P2RX7 Gene on
Suicidal Behaviour

Recently, the role of neuroimmune systems has gained increased attention in psychi-
atric disorders and symptoms also including mood disorders and suicidality, and one of the
most prominent emerging neuroinflammatory targets is the ATP-sensitive P2X7 purinergic
receptor (P2X7R) due to its significant role in facilitating neuroinflammation in the central
and peripheral nervous system [20,47]. The P2X7R is a ligand-gated nonselective cation
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channel [33] activated by elevated concentrations of extracellular ATP, which induce Na+
and Ca++ influx and K+ efflux and, as a result of repeated or sustained stimulation, a
pore allowing organic ion passage including choline or N-methyl-D-glucamine (NMDG+)
opens [48]. P2X7 receptors are highly expressed in various immune cells (in particular
macrophages and microglia), epithelial cells, oligodendrocytes of the CNS, and Schwann
cells of the PNS [49,50], while functional P2X7 expression in neurons and astrocytes is
debated [51].

As a result of the wide distribution of the P2X7 receptor, its activation has a direct
or indirect effect on a number of physiological and pathophysiological processes. In
brief, these processes include the tonic inhibition of BDNF production in the CNS [52],
regulation of cell proliferation and cell death, as well as the release of microparticles and
exosomes, the production of reactive oxygen and nitrogen species and multinucleated cells,
stimulation of glutamate response, the activation of the inflammasome, and the subsequent
release of interleukin (IL)-1β and IL-18. [53]. Although the role of P2X7 receptors has been
investigated in several neurodegenerative and psychiatric disorders, such as Parkinson’s
or Alzheimer’s disease, multiple sclerosis, depression, bipolar disorder, schizophrenia, and
anxiety, there has not been a study so far that explored its role in suicidal behavior.

Nevertheless, the contribution of inflammatory processes to the pathophysiology of
suicide is increasingly researched [2,4,9,24,26]. Inflammatory activation of the immune
system in patients with a higher suicide risk has been investigated regarding cytokines
in serum, cerebrospinal fluid, and postmortem studies [54–56]. Suicidal patients display
increased levels of proinflammatory cytokines IL-6, IL-1β, and TNF-α, [54,57], in addi-
tion to decreased neuroprotective IL-8 [26], and even a history of hospitalization due to
infection has been associated with suicidal behaviour [58]. High concentrations of the
acute-phase marker of inflammation, C-reactive protein (CRP), in plasma was also corre-
lated with suicidal intent [59,60]. Systemic inflammation has been suggested to increase
the risk of suicide completion as well [61]. In postmortem studies, significantly elevated
mRNA and protein levels of IL-1β, IL-6, and TNF-α were observed in the prefrontal cortex
of adults who committed suicide [26], while the latter marker was found to be elevated
in the dorsolateral prefrontal cortex as well, regardless of psychiatric diagnosis [62,63].
In this area, decreased chemokine (CCL1, CCL13, CCL17) and anti-inflammatory IL-10
concentrations were reported in suicide completers compared to controls [63,64]. The
significance of inflammation in suicide and depression is also highlighted by observations
of different treatments’ outcomes. A considerable amount of patients undergoing therapy
with cytokines, for example interferon-α, have been found to develop depression [64,65],
suicidal ideation or attempt suicide [66,67]. Meanwhile, favorable results have been re-
ported regarding nonsteroidal anti-inflammatory drugs (NSAID): patient populations using
ibuprofen, naproxen, celecoxib, or aspirin experienced significantly less suicidal ideation
compared to the ones receiving acetaminophen treatment [68,69].

3.2. P2X7 Receptors and the P2RX7 Gene as a Potential Focus of Attention in Understanding and
Treatment of Neuropsychiatric Disorders and Suicide

In humans the P2RX7 gene encoding the P2X7 receptor is located at 12q24.31 chro-
mosome position [69], a region already implicated in affective and anxiety disorders [70].
The P2RX7 gene comprises 13 exons and encodes an 595-amino acid protein subunit. The
expressed receptor has 10 splice variants, 3 of which have been identified in humans,
showing highly divergent downstream signalling properties [71,72]. Genetic variation in
P2RX7 has been shown to contribute towards gain or loss of function, leading to further
variation in P2X7 receptor function [20]. Polymorphisms are widespread in the human
P2RX7 gene with at least a dozen non-synonymous polymorphisms (NS-SNPs), with con-
sequent changes in amino acid sequence and receptor function yielding possibly altered
susceptibility to various neuropsychiatric disorders [73]. Preclinical studies using genetic
and pharmacological interventions implicate the P2X7 receptor as crucial in stress-induced
anxiety- and depression-like behaviours in rodent models. In addition, several human
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studies reported significant association between P2RX7 SNPs and NS-SNPs and vulnerabil-
ity to affective disorders [74]. Although P2RX7 has not yet emerged as a candidate gene
for suicidal behaviour, in a previous GWAS many of the strongest candidate genes were
associated with inflammatory response (ADAMTS14, PSME2) [75].

3.3. Effects of P2RX7 Variation on Suicidal Behaviour in Interaction with Childhood Adversity

Experiencing childhood abuse and/or neglect has severe negative psychological con-
sequences that often persist into adulthood, appearing not only as high-risk behaviours,
including substance abuse [76] and risky sexual behaviour [77], but in the form of sub-
stantial mental health problems, such as depression, anxiety, posttraumatic stress disor-
der [78,79], and suicide [80,81]. Childhood trauma has established immunological effects
that may contribute to suicide risk. Major negative experiences that occur within sensitive
developmental windows adversely influence the immune response, inducing elevated in-
flammatory states that lead to long-term consequences on both the brain and behaviour [82].
Altered dynamics of the HPA-axis, abnormal cortisol stress reactivity [83], persistently
increased levels of inflammatory cytokines including IL-6 and TNFα, low-grade elevations
in the inflammatory marker CRP, and greater inflammatory responses to later psychosocial
stress [84] have been linked to high levels of early-life trauma.

Psychosocial stress, which is a major environmental etiological contributor to suicide
risk, has been found to be associated with changes in ATP-mediated P2X7 receptor sig-
nalling and also neuroinflammation [20]. P2X7R is expressed in various tissues and cells,
including monocytes/macrophages, lymphocytes, dendritic cells [85], and microglia, the
resident immune cells of the CNS [86,87], raising P2X7R to be a key driver of neuroin-
flammation, not only in the periphery but also in the brain [88]. In healthy tissues, under
non-pathological conditions, when the extracellular concentration of ATP is low, P2X7R
remains silent [32]; however, stressful circumstances evoke a marked increase in extra-
cellular ATP, working as a damage-associated molecular pattern (DAMPs), and resulting
in the activation of P2X7 receptors in microglia [89]. This leads to the activation of the
NRLP3-associated inflammasome, which in turn eventuates the enhanced release of proin-
flammatory cytokines IL-1β and IL-18, while P2X7R activation also facilitate the release of
other cytokines, such as IL-6 and TNF-α [90]. The above process has been suggested to play
a significant role in the impact of chronic stress, leading to impaired neuroplasticity and the
emergence of depressive-like behaviour, while pharmacological or genetic blockade of the
P2RX7-NLRP3-IL1β pathway might foster resilience against stress via the involvement of
microglia and monocytes, suggesting the potential role of P2X7R signalling as a connecting
point between chronic stress and mood disorder [91,92].

In the present study, we revealed using a clumping method that variation along the
P2RX7 gene shows significant, both main and interaction effects with childhood adversity
on current suicidal ideation, and additionally a significant interaction effect with childhood
adversity on current hopelessness. As noted before, there have been no studies so far to
investigate and provide results on the potential role of the P2RX7 gene in suicidality; thus,
we can examine our results in light of the previous work on neuroinflammation and suicide.
A recent study investigating depressed patients found that childhood adversities and high
suicide risk are associated with the upregulation of various pro-inflammatory cytokine
and compound genes, including IL-1β, IL-6 and TNF, and of genes related to the adhesion,
coagulation, and chemotactic ability of monocytes, while in patients lacking childhood
adversities and having low suicide risk, reduced gene expression was detected [57]. As
P2X7R has a significant role in processes related to the impairment of neuroplasticity as
well [20], it is remarkable that early-life stress was found to regulate genes and pathways in-
volved in neuronal plasticity differentially [93]. Genome-wide methylation studies revealed
that, in individuals who committed suicide and experienced childhood disadvantages,
early-life stress was linked to altered methylation of genes involved in neuronal growth
and neuroprotection in the hippocampus [94,95]. Studies on peripheral tissues of survivors
also underlined the association between childhood traumas and differential methylation of
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genes involved in neuronal plasticity [96]. Furthermore, both animal and human studies of
plasticity genes, such as BDNF and TRKB, are consistent with the above findings [97–99].
In our previous study, we identified several clumps in the IL6 gene influencing lifetime
suicide attempts, current thoughts of death, and current suicidal ideation, but only in
interaction with early childhood adversities [25], the last one of which matched the pattern
seen for P2RX7. These data support the involvement of the immune system as a mediator
between childhood adversity and increased suicide risk through a long-lasting activation
of inflammation, which is complemented by our results on P2RX7.

Our results are also in line with animal models examining the consequences of perina-
tal stress on development and long-term behaviour, and the possible later effects of neuroin-
flammation. Perinatal stress may lead to the increased density and activity of microglial
cells in the hippocampus and frontal cortex, and depression-like disruptions [100,101].
The first factor is linked to alterations in the expression of various developmental genes
involved in inflammation among other processes [102,103]. As a result of maternal immune
activation, the postnatal amygdala is affected by microglial cell activation as well [104]. A
wide range of studies has shown that microglial function disruptions in critical develop-
mental periods might result in structural alterations and behavioural perturbations, such
as anxiety, depression, social bonding, that last into adulthood [102,105], and thus might
lead to suicidal behaviour [106]. By revealing a significant main effect and interaction of
childhood adversities and several variants in the P2RX7 gene, our results highlight the role
of both inflammation and altered P2X7 signalling in predisposing to suicide risk.

3.4. Limitations

Our study has several limitations that must be taken into account when interpreting the
results. First, childhood adversities, recent life events, and lifetime suicide attempts were
retrospectively evaluated based on the subjects’ self-report, which might contribute to recall
and reporting bias. Similarly, current suicidal ideations, thoughts of death and hopelessness
were also self-reported. Second, measuring childhood adversities and recent negative life
events did not take into account the diverse severity and subjective effect of individual
life events. Third, approximately two-third of our sample is female subjects and its overall
scope is limited to European white participants, which may limit the generalizability of our
results to the society at large. Fourth, we could not separate depression from our suicidal
phenotypes, and so its contribution to suicidal behavior cannot be ruled out. However, our
study is not lacking in strengths in any way: instead of hypothesis-based candidate SNP
selection, we considered several hundred variants along the P2RX7 gene with a clumping
method, utilizing a dimensional approach to capture different emergences of suicidal
behavior along the suicide spectrum, and using a GxE paradigm with two etiologically
different types of stressors.

4. Methods
4.1. Study Population

1644 non-related volunteers (471 males, 1173 females) with self-reported European
white ethnic origin aged 18–60 (mean age: 32.44 years) from Greater Manchester and
Budapest were recruited between 2005 and 2008 through general practices and via an
online platform to participate in the NewMood study (New Molecules in Mood Disorders,
Sixth Framework Program of the European Union LHSM-CT-2004-503474). After providing
written informed consent, participants provided genetic data using a saliva-based sampling
kit for genotyping, and self-reported sociodemographic data including age, gender, recent
negative life events occurring in the past year, childhood adversities, and suicide- and
suicide risk-related markers for phenotyping. Detailed background information regarding
sociodemographic background, information related to mental and somatic health and
treatment received, as well as information on psychological and personality factors not
used in the present analyses was collected. A more detailed description of the sample
population can be found in our previously published reports [107–109]. The study has been
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conducted in accordance with the Declaration of Helsinki, and it has been approved by
the Scientific and Research Ethics Committee of the Medical Research Council, Budapest,
Hungary, and by the North Manchester Local Research Ethics Committee, Manchester,
United Kingdom. All participants provided written informed consent prior to participation.

4.2. Phenotypes

Our present study focused on measuring four suicide- and suicide risk-related pheno-
types, and two types of environmental stressors.

Previous lifetime suicide attempts (SUIC) were recorded based on self-reports, pro-
ducing a dichotomous variable. Current markers of suicidal risk were assessed by relevant
items of the Brief Symptom Inventory [110], a questionnaire measuring psychopathological
symptoms in several scales during the previous week, using a scale from 0 to 4 (“Not at all”
to “Extremely”) depending on the distress caused. In case of this study, 3 items were utilized:
“Thoughts of ending your life” (SI-BSI03) was used to evaluate the level of current suicidal
ideation; “Feeling hopeless about the future” (H-BSI18) was used to reflect the actual level
of hopelessness, a well-established independent risk factor of suicide; and “Thoughts about
death and dying” (ToD-BSI21) was used to measure death-related thoughts.

We assessed childhood adversities and traumas (CHA) as distal and etiological stres-
sors, and recent negative life events (RLE) occurring in the past year as proximal trigger
stressors, to evaluate gene–environment interactions contributing to the emergence of
the measured suicidal behaviours. Early childhood adversities and traumas (CHA) were
assessed by a short form of the Childhood Trauma Questionnaire (CTQ) [111], which
includes four items on parental abuse and neglect, and two additional items on the loss
of the parent, as validated previously [109]. In the analyses, the sum of item scores was
used. Recent negative life events (RLE) occurring within the last 12 months were registered
via the List of Threatening Experiences [112,113], incorporating four types of stressful life
events regarding financial difficulties, illnesses/injuries, personal problems, and intimate
relationship or social network difficulties. In the statistical analyses, the number of recent
negative life events was used.

4.3. Genotyping

In order to detect DNA, buccal mucosa cells were provided by participants using a
cytology brush (Cytobrush plus C0012, Durbin PLC, Hayes, UK). Extraction of the genomic
DNA was carried out according to the previously described protocol of Freeman et al. [114].
P2RX7 genotype characterization was performed using Illumina’s CoreExom PsychChip.
All laboratory work was performed under the ISO 9001:2000 quality management require-
ments and was blinded regarding phenotype.

4.4. Statistical Analyses

In the analyses below, Plink v1.90 was used to calculate MR (<0.05), HWE (>1 × 10−5)
and MAF (>0.01) as part of quality control steps prior to the analyses, for clumping, and
for building logistic and linear regression models to test for main and interaction effects
of genetic variation in the P2RX7 gene. Analyses were supported by scripts individually
written in R 3.0.2 (R Core Team, 2013). Descriptive statistics were calculated using IBM
SPSS Statistics 25.

Genotyping provided a dataset comprising 1644 individuals genotyped for 681 SNPs
in the region of P2RX7 gene (with boundaries extended by 10 kb) available in the NewMood
database. The 3-step quality control protocol applied for the SNPs involved the calculation
of Hardy–Weinberg Equilibrium (HWE; >1 × 10−5), missingness rates (MF; <0.05), and
minor allele frequencies (MAF; >0.01). The 335 SNPs surviving quality control steps were
entered into analyses with logistic and linear regression models to investigate the main
effects of P2RX7 variation on lifetime suicidal behaviour, current suicidal ideation, current
hopelessness, and current thoughts of death, which was followed by gene–environment in-
teraction models with early childhood adversities and recent negative life events (Figure 1).
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After running the regression models, a clumping procedure followed, both for main
effect and for the two types of GxE interaction effects separately, based on linkage disequi-
librium (LD) estimates between the SNPs using the CLUMP function in Plink. Clumping
is a statistical method for yielding clumps of intercorrelated SNPs based on empirical
estimates of their linkage disequilibrium (LD), stepping beyond independent significance
levels, identifying connected SNPs and their top SNP, the one with the highest significance.
Four parameters were used for clumping: (1) maximum p-value of the clump’s top SNP
was set at 0.001; (2) maximum p-value for the clump’s secondary SNPs was 0.05; (3) mini-
mum LD R2 with top SNP was 0.5; and (4) physical distance threshold with top SNP was
250 kilobase.

All analyses were run according to additive, dominant and recessive models. Popu-
lation, age and gender were covariates in all Plink logistic and linear regression models.
Additionally, when testing an SNP × CHA/RLE interaction effect, the main effects of both
the SNP and CHA/RLE were also entered as covariates in the model. Nominal significance
threshold was p < 0.05. To correct for multiple comparisons in analyses for each of the
above outcome variables, Bonferroni correction was applied. The design and methods of
our study are shown in Figure 1.

5. Conclusions

In conclusion, we found that variation along the P2RX7 gene encoding the purinocep-
tor P2X7 is associated with markers of increased risk of suicide and mediates the effects
of early childhood adverse experiences and traumas on later risk of suicide. Our study
highlights both our limited understanding of the pathophysiology of suicide, and the need
to identify additional brain targets and pathways to effectively minimize the heavy burden
of suicide. Exploring neuroinflammatory pathway and in particular the purinoceptors may
provide novel insights into the pathophysiology of different neuropsychiatric disorders,
and may yield novel and much-needed biomarkers, such as genetic variations, to guide the
treatment of these disorders.
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