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Abstract

Major depressive disorder (MDD) and posttraumatic stress disorder (PTSD)

are the most common causes of emotional distress that impair an individual's

quality of life. MDD is a chronic mental illness that affects 300 million people

across the world. Clinical manifestations of MDD include fatigue, loss of

interest in routine tasks, psychomotor agitation, impaired ability to focus,

suicidal ideation, hypersomnolence, altered psychosocial functioning, and

appetite loss. Individuals with depression also demonstrate a reduced

behavioral response while experiencing pleasure, a symptom known as

anhedonia. Like MDD, PTSD is a prevalent and debilitating psychiatric

disorder resulting from a traumatic incident such as sexual assault, war, severe

accident, or natural disaster. Symptoms such as recalling event phases,

hypervigilance, irritability, and anhedonia are common in PTSD. Both MDD

and PTSD pose enormous socioeconomic burdens across the globe. The search

for effective treatment with minimal side effects is still ongoing. Ketamine is

known for its anesthetic and analgesic properties. Psychedelic and psycho-

tropic effects of ketamine have been found on the nervous system, which

highlights its toxicity. In this article, the effectiveness of ketamine as a

potential therapeutic for PTSD and MDD along with its mechanisms of action,

clinical trials, and possible side effects have been discussed.
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1 | INTRODUCTION

Ketamine, an anesthetic agent, was first developed by
Calvin Stevens at Parke Davis in the 1960s as an analog
of phencyclidine (CI‐581).1 In 1964, it was accepted for

human trials,1 and 20 prisoners in Jackson prison in
Michigan, USA, were the first to get ketamine adminis-
tered.2 Ketalar (ketamine hydrochloride) emerged as the
first Food and Drug Administration (FDA)‐approved
ketamine sample for individual utilization.3 Ketamine
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(an arylcyclohexylamine) has one chiral center and
two enantiomers: (R)‐ketamine (or ketamine) and
(S)‐ketamine (or esketamine).4 The medical uses, side
effects, and chemical structure of ketamine are shown in
Figure 1. It acts by blocking the N‐methyl‐D‐aspartate
receptor (NMDA).5 (S)‐ketamine shows a higher affinity
for NMDAR than (R)‐ketamine. Therefore, it was manu-
factured as an antidepressant.6 In addition, S‐ketamine has
higher analgesic and anesthetic effects than R‐ketamine
and causes fewer psychotic and other adverse effects.7

Although both (R)‐ketamine and (S)‐ketamine have been
described to exert antidepressant results independently,8 R‐
ketamine has greater antidepressant effects than S‐
ketamine, without ketamine‐related side effects.9 More-
over, preclinical studies on an animal model with
depression showed that (R)‐ketamine has the potential to
exert antidepressant effects for a more extended period,
and (R)‐ketamine has fewer deleterious side effects than
(R, S)‐ketamine and (S)‐ketamine.10 While (R)‐ketamine
and (S)‐ketamine have different affinities for the NMDAR,
(R)‐ketamine shows more substantial and more enduring
antidepressant‐like effects in animal models of depression.
Importantly, in rodents, monkeys, and humans, (R)‐
ketamine induces fewer negative side effects than (R, S)‐
ketamine or (S)‐ketamine. A recent pilot trial showed that
(R)‐ketamine produced both quick‐acting and long‐lasting
antidepressant benefits in patients with depression who
were resistant to therapy.11 The most usual metabolic
conversion is N‐demethylation into nor‐ketamine. The
molecule fulfills Lipinski's rules, that is, the measures used
to evaluate the oral action of the drug. In the United States,
ketamine is a Schedule III and a widespread street drug.11

There is now just one pharmacological class of drug that
has been licensed for the treatment of the symptoms of
posttraumatic stress disorder (PTSD), which is generally a
challenging mental health condition to treat. Although the
selective serotonin reuptake inhibitors (SSRIs) have a low
risk of side effects, unfortunately, it is challenging to
achieve a complete remission of PTSD symptoms. Atypical
antipsychotics, hypnotics, mood stabilizers, and anxiolytics
are examples of off‐label augmentation possibilities, but
the use of these drugs for the treatment of PTSD is not
efficient. Given that it reduces NMDA receptor activation,
ketamine is probably used more frequently for anxiety
disorders. Although it is acknowledged that the controlled
drug ketamine is also constrained by the offset of effects
over 1–2 weeks, which limits its usage in treatment‐
resistant MDD.12 Moreover, it is generally one of the most
abused drugs at raves and among spiritual seekers as it has
the potential to elicit out‐of‐body experiences (OBEs).6

OBEs are hallucinatory visual experiences in which the
physical body is perceived as existing in a different visual
environment. These events have apparently been linked to
a wide variety of psychiatric conditions, neurological
issues, pharmaceutical drugs, and altered psychological
states.13 OBEs have been associated with a number of
brain lesions, especially in the parietal and temporal
regions, mental diseases, intense emotional states like a
near‐death experience, substance abuse, migraines, and
epilepsy, but relatively few have been recorded in
dissociative identity disorder.14 Ketamine has numerous
names like cat valium, purple, vitamin K, cat tranquilizer,
special la coke, super acid, and jet special K. One of the
most common ways to administer ketamine is through

FIGURE 1 Chemical structure, medical
uses, and possible side effects associated with
the administration of ketamine. [Color figure
can be viewed at wileyonlinelibrary.com]
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nasal ingestion.3 The patient generally enters a dissociative
state after ketamine is administered at sedation doses. This
state is different from the state evoked by other sedatives,
wherein the patient is not unarousable, as observed with
medicines like propofol and etomidate, but rather, their
sensory inputs are disconnected from their conscious state.
Patients can speak and have rare movements on intake of
this medication; despite remaining unaware of their
surroundings, patients will frequently have eye move-
ments, including several patterns of nystagmus.15 A case
series published by Weiner et al. recorded anxiety,
palpitations, chest pain, agitation, and tachycardia as some
of the clinical presentations in ketamine abusers.16 This
review of literature aims to understand how ketamine can
modulate the symptoms of patients suffering from PTSD
and depression. Moreover, the toxic effects of ketamine
have also been discussed further in the article.

2 | OVERVIEW ON DEPRESSION

Depression is a long‐term mental condition that affects
300 million people globally.17 Some of the symptoms
include lack of energy, loss of interest in everyday tasks,
psychomotor agitation, diminished capacity to focus,
suicidal ideation, hypersomnolence, altered psychosocial
functions, and loss of appetite globally.18,19 The risk of
developing major depression is influenced by both
genetics and the environment. It has been suggested
that epigenetic mechanisms increases in the risk of
depression following exposure to traumatic life events
and offer a mechanistic framework for integrating
hereditary and environmental components. The term
“epigenetics” refers to biological mechanisms that regu-
late gene expression and translation but do not entail
modifications to the DNA sequence. These processes
include histone modifications, microRNAs, and DNA
methylation (DNAm).20 Depression is multifactorial and
it is still not clear as how it precipitates differentially in
different individuals. When individuals have a severe
medical condition, depression may occur. Others may
experience depression when their lives change, such as
when they lose a loved one. Some individuals have a
history of depression in their families. People who suffers
from depression usually experience an overwhelming
melancholy and loneliness for no specific reason.17 In
2008, the World Health Organization classified depres-
sion as the third most common disease, and projected
that disease will rank the first by 2030.19 The brain of
individuals with depression has a different structural and
functional appearance. According to data from magnetic
resonance imaging (MRI), patients with depression have
gray matter loss, a reduction in the total brain volume,

altered hippocampal volume, amygdala atrophy, striatal
atrophy, and reduced serotonin transporters in the
amygdala. Therefore, it has been confirmed in numerous
studies that depression as a neurodegenerative disorder
resulting in atrophy of the brain regions.21 Neuro-
degenerative disorders develop due to loss of neurons,
resulting in a decline in cognitive functioning of the
brain.22–28 Several studies have identified the hippocam-
pus as the key brain region linked to depression, and
hippocampal plasticity occurs in patients with depres-
sion.29 Interestingly, nutritional deficiencies have been
observed to initiate and exacerbate depression and
anxiety.30,31 Furthermore, research has found a link
between inflammation and depression. Elevated concen-
trations of inflammatory markers such as interleukin‐6
(IL‐6), tumor necrosis factor‐alpha, C‐reactive protein,
and the soluble IL‐2 receptor have been identified in
depressive patients, indicating that their inflammatory
response is disrupted. The pathophysiology of depression
is also influenced by nitrosative and oxidative stress. In
patients with depression, elevated cortisol levels, stress
axis dysregulation, and reduction in brain‐derived
neurotrophic factor (BDNF),32,33 increase in insulin‐like
growth factor‐1, and fibroblast growth factor‐1 have all
been reported.34

2.1 | Neurochemistry of depression: The
monoamine hypothesis

The monoamine hypothesis of major depressive
disorder states that a reduction in certain neurotrans-
mitters, such as dopamine, serotonin, and nor-
epinephrine (NE), in the brain induces clinical
depression. Also, this theory has been proven in the
case of antidepressant intake. Antidepressants play a
major role in the increase of these three neurotrans-
mitters, which eventually decreases depressive symp-
toms.17 Many studies have found that depression arises
from dysfunction in serotonergic, dopaminergic, and
noradrenergic systems. However, some recent studies
show that monoamine deficiency cannot lead to
depression and that increasing the levels of neuro-
transmitters cannot help to cope with symptoms of
depression.17 The “serotonin hypothesis” of clinical
depression has been around for more than 50 years.
The most basic claim of the hypothesis is that the
pathophysiology of depression is caused by decreased
serotonin pathway activation. This hypothesis was
based on the depressogenic effects of amine‐depleting
substances like reserpine as well as the effects of
antidepressant medications like monoamine oxidase
inhibitors and tricyclic antidepressants, which were
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later found in animal experimental studies to potenti-
ate the effects of serotonin and other monoamines at
the synapse. These substances were discovered by
clinical spontaneity.35 The neurotransmitter dopamine
is responsible for motivation, reward prediction, and
responsiveness to daily activities; dysfunction in the
dopamine system leads to anhedonia, which is one of
the most common symptoms of depression.36 There is
ample evidence that NE is involved in depression, and
current research on neural circuits and symptoms has
highlighted the unique function of NE in this condi-
tion. NE controls executive functioning, which governs
cognition, motivation, and intellect—three factors
crucial to social interactions. One of the most signifi-
cant factors influencing the quality of life of people
with depression may be social dysfunction.37

3 | DEEPER INSIGHTS
INTO PTSD

Many individuals encounter potentially traumatic situa-
tions in their lives that lead to posttraumatic stress
symptoms for a short period; this is a common reaction.
In PTSD, the neurotransmitters that are mainly involved
are serotonin, GABA, and glutamate.38 Most people can
cope with a stressful situation with the help of others, but
about 10% of these individuals develop PTSD. Whether
an individual develops PTSD is determined by the time of
exposure, the age at which the stressful event occurred,
and the type of traumatic experience.39 PTSD is a mental
condition that develops after traumatic experiences like
sexual assault, military warfare, a major vehicle accident,
kidnapping, natural disasters, and so forth.40,41 It was
first studied when symptoms were seen in people in Civil
War I and people who got exposed to military trauma. In
the early stages of PTSD, within days of being exposed to
trauma, clinical signs appear.42,43 Recall event phases,
hypervigilance, hyperarousal, dysphoria, or anhedonia
are some of the most typical symptoms.44 PTSD is more
common among police officers, emergency medical
personnel, military soldiers, and firefighters, according
to the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM‐5). It is linked to poor
academic performance, increased incidences of depres-
sion, suicide attempts, and substance addiction, and
other psychological problems.45 Many risk factors for
PTSD have been empirically classified. These can be
divided into three broad categories: preexposure, peri-
traumatic, and postexposure factors. Preexposure factors
include neurobiological factors such as endowment,
genes, and epigenetic modifications, as well as environ-
mental factors such as personal psychiatric history,

stressful life, poor living conditions, trauma exposure,
and lower education, along with behavioral factors such
as higher emotional reactivity and impaired executive
function.45 The nature and severity of the trauma are
peritraumatic elements. Social assistance and “second-
ary” stressors such as job loss resulting from the tragedy
are examples of postexposure factors.46 Anatomical and
functional anomalies in the frontolimbic circuitry, which
carries out emotion regulation and threat processing
tasks, were detected during neuroimaging evaluations of
persons with PTSD. In addition, the ventromedial
prefrontal cortex and the dorsal anterior cingulate cortex
have reduced gray matter volume.44 A cross‐sectional
study of PTSD patients found a decrease in hippocampal
volume and increased amygdala reactivity. In the 1980s
and the 1990s, psychological debriefing was widely
utilized to prevent PTSD symptoms.47 This therapy
facilitated rapid emotional processing of traumatic
experiences soon after exposure to an incident,48 but
some research has shown that debriefing negatively
impacted the recovery process.49 Cognitive behavioral
therapy (CBT) has also been useful in managing some
of the symptoms of PTSD.50 Hydrocortisone is effective in
the treatment of PTSD in people who have never been
treated for psychiatric illnesses.49 For the treatment of
PTSD, hydrocortisone appears to be a promising and
affordable drug. The need for additional, thorough
research in this area is highlighted by the very few
studies and the poor methodological quality of these
studies.51

4 | KETAMINE: AN EMERGING
ANTIDEPRESSANT

The therapeutic options for depression mainly rely on
the usage of antidepressants, mostly monoaminergic
agents, such as tricyclic antidepressants, monoamine
oxidase inhibitors, selective SSRIs, and dual serotonin–
norepinephrine reuptake inhibitors. The effectiveness of
these agents depends on the hypoactivity of the
monoamine neurotransmitter system (predominantly
NE, dopamine, and serotonin), leading to the patho-
physiology of depression.52 Unfortunately, present phar-
macologic therapeutic interventions are ineffective for
depression since their therapeutic benefits take weeks to
manifest, and only one‐third of patients with depression
receive proper treatment. Individuals suffering from
treatment‐resistant depression commonly struggle with-
out effective pharmacological treatment, resulting in
suicidal ideation.53 Clinical evidence has shown that an
intravenous infusion of low‐dose ketamine (0.5 mg/kg)
just once has a rapid antidepressant effect that continues
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to be effective for at least 1 week.54 In addition, studies
have also shown ketamine to be an effective antidepres-
sant in patients with treatment‐resistant depression who
also have suicidal ideation.53

5 | EFFECT OF KETAMINE ON
MDD PATIENTS

Major depression is defined by increased activation or
sensitivity to noxious stimuli in limbic emotion
processing and subcortical areas and insufficient
activation or inadequate functioning in prefrontal
cortical regions involved in emotion regulation and
cognitive control processing.54 Ketamine has been
recognized as a rapid‐acting antidepressant therapy
in many studies. It targets the protein complex
NMDAR, which is present on the surface of neurons,
as mentioned previously. According to studies, inhibi-
tion of NMDAR proteins with ketamine is effective in
managing the depressive‐like behavior more quickly
and than traditional antidepressant medications.55 It
inhibits GluN2B, which is one of the subunits of
NMDAR protein. Experiments on humans and rats
have revealed that pharmacological agents with the
ability to inhibit this subunit (GluN2B) will have
antidepressant‐like characteristics.56 Miller, Yang, and
colleagues created a rodent line (called 2BCtx) that
lacks the GluN2B subunit in excitatory neurons to
study the effects of ketamine on NMDAR proteins.
They carried out two tests to assess the baseline levels
of depressive‐like symptoms in 2BCtx mice: the forced‐
swim test and the tail‐suspension test. In these

experiments, a rodent with depressive‐like symptoms
spends less time moving than a wild‐type rodent,
indicating behavioral despair, one of the hallmarks of
depression in humans. The 2BCtx rodents spent more
time moving than the wild‐type rodents throughout
both tests, implying that they show fewer depressive‐
like symptoms.57 In patients with depression, new
research links specific variations in a network of
subcortical, prefrontal, and limbic brain areas.58

According to one theory, ketamine enhances α‐
amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid
(AMPA) and NMDA receptor function and density by
directly blocking NMDA receptors and indirectly
increasing AMPAR function and density as shown in
(Figure 2), which activates downstream synaptogenic
signaling pathways, restoring synaptic connectivity
and strength in the prefrontal cortex and the hippo-
campus.59 Amino acid, neuropeptide, monoamine, and
neuroendocrine transmitter systems influence behav-
ioral changes by influencing the connection of neurons
inside our brain.58 Ketamine acts by bringing these
mood‐regulating mechanisms back into balance.
According to positron emission tomography, ketamine
increases neuronal activation in the prefrontal cortex
(PFC).60 It was also discovered to activate the
mammalian target of rapamycin pathway quickly,
leading to an increase in synaptic signaling proteins
and improved function and a number of new spine
synapses in mouse PFCs.61 These findings support
ideas relating the antidepressant effects of NMDA
receptor antagonists to an increase in neuroplasticity
and neurotrophic‐related factors, as well as neuro-
trophic theories of depression in general.62 Although it

FIGURE 2 Effect of ketamine
metabolites acting on N‐methyl D‐aspartate
(NMDA) and α‐amino‐3‐hydroxy‐5‐methyl‐
4‐isoxazolepropionic acid (AMPA) receptors.
The binding of ketamine or nor‐ketamine
will inhibit the activity of the NMDA
receptor. In contrast, if ketamine binds to the
AMPA receptor, it will be activated and will
initiate downstream signaling activities; both
the inhibition of the NMDA receptor and
activation of the AMPA receptor will lead to
the formation of new synapses and repair of
neuronal dendrites, enabling reversal of the
adverse effects of depression or stress
associated with posttraumatic stress disorder
in patients. [Color figure can be viewed at
wileyonlinelibrary.com]
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is clear that ketamine exerts antidepressant effects by
altering emotion regulation and processing systems in
the brain, the exact nature of these changes is still
unknown.60

6 | EFFECT OF KETAMINE ON
PTSD PATIENTS

Paroxetine and sertraline are the only two permitted
drugs approved by the FDA for treating symptoms of
PTSD.63 A survey was distributed to several PTSD
researchers, asking them to suggest five plausible new
pharmacological treatment targets for PTSD to better
understand pharmacotherapies that should be investi-
gated to treat the condition. As a result, glucocorticoid
receptor agonists, NMDA receptor antagonists, opioid
receptor antagonists, cannabinoid receptor agonists,
and non‐SSRI antidepressants were selected as the
first five pharmacological treatment targets for
PTSD.64 As a result, among experimental medications,
rapid‐acting glutamatergic agents and ketamine are
considered the best choices. The effectiveness of
ketamine over midazolam in chronic PTSD patients
was investigated in a clinical study.41 The use of
ketamine resulted in a significant reduction in the
severity of PTSD symptoms. This was the first study to
report an active reduction in the severity of symptoms
in patients with chronic PTSD after receiving keta-
mine infusion.41 The activation of the NMDA receptor
has been linked to the creation of uncontrollable
intrusive memories, and high NMDA receptor func-
tion is associated with the development of PTSD.65

A study conducted by Zhang and colleagues examined
the development of PTSD in mice after they were
exposed to a context‐specific fear, based on the fact
that intrusive thoughts are linked to activation of the
NMDA receptor. After administering an electric shock
to their feet, these rodents were subjected to a time‐
dependent sensitization technique (TDS). The rats
were restrained for 2 h before being placed in a
cylinder‐shaped pipe full of water and forced to swim
for 20 min; following a 15‐min break, they were
administered diethyl ether. Zhang and colleagues
were able to recreate the TDS after a 1‐week recovery
period. During this time, a ketamine dose was
administered to the rodents based on their weight.
The first‐line therapy was sertraline, an SSRI, which
was administered to the positive controls. By counting
the number of crossing and rearing with lines, Zhang
and colleagues ruled out the possibility that ketamine
had an influence on the rodents' mobility and activity.
Rearing is a method of measuring exploratory and
active behaviors in mazes and open fields. No
significant change in rearings or line crossings was
observed in the experimental and control groups of
rodents. This confirmed that neither ketamine nor
traumatizing stimuli were involved in causing anxiety
or psychosis when used with TDS exposure. Starting
from the first day after the TDS procedure, ketamine
or sertraline was administered regularly. The hippo-
campus of animals with post‐TDS had considerably
lower levels of BDNF in post‐mortem examinations.66

Chronic ketamine treatment reduced the impact of the
stressful incident and increased BDNF levels. This is
significant because the hippocampus, in particular, is

TABLE 1 Different clinical trials of ketamine conducted on PTSD and MDD patients.

S. no.
Name of the
disorder Result References

1. PTSD & MDD When ketamine was administered at a dose of 0.2–2mg/kg to patients, improvements in
MDD symptoms were observed, and this is still in Phase II trials for PTSD

[71]

2. PTSD An unknown dose of ketamine was administered to a patient, with no effect on PTSD
symptoms

[72]

3. Chronic PTSD 0.5 mg/kg of ketamine was administered to patients reduce PTSD symptoms rapidly [73]

4. Chronic PTSD 10mg of ketamine reduces physical aggression and decreases emotion dysregulation in
patients

[74]

5. PTSD An unknown dose of ketamine was administered to the patient, which did not show any
effect on the symptoms

[75]

6. Chronic PTSD 0.5 mg/kg of ketamine was administered to the patient; it reduced PTSD symptoms [76]

7. PTSD When the unknown dose of ketamine was administered to the patient, it reduced
symptoms of PTSD

[77]

Abbreviations: MDD, major depressive disorder; PTSD, posttraumatic stress disorder.
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linked to memory and learning, and so is the
hypothalamus–pituitary–adrenal axis (HPA). Antago-
nizing NMDA receptors have been shown to hinder
fear training consolidation in the hippocampus.67

According to a study, individuals in emergency care
or the Intensive Care Unit who have experienced
stressful situations are much more prone to develop-
ing PTSD. Sedative/anesthetic drugs can interfere
with memory formation mechanisms, increasing or
decreasing the memory of a traumatic experience and,
as a result, increasing or decreasing the likelihood of
developing PTSD.68 Several investigations have shown
that a breakdown of synaptic connectivity induces the
symptoms of PTSD. Stress linked to PTSD may
decrease synaptic connectivity, which is normally
mediated by glutamate.69 Due to the critical function
of glutamate synapses in these brain circuits, ketamine
intervention may repair synaptic connections in these
circuits, correcting the impact of stress.70 Table 1
presents a summary of different clinical trials con-
ducted using ketamine in both PTSD and MDD
patients.

7 | KETAMINE AND
NEUROTOXICITY

Ketamine exerts psychedelic and psychotropic effects
on the central nervous system. Psychedelic side effects
depend on the amount of dose infused during the
treatment of chronic pain. The perception of reality is
affected, causing panic attacks, increased awareness of
sound and space, auditory hallucinations, visual
hallucinations, paranoid ideas, and inability to control
thoughts. Moreover, some patients experience intense
euphoria, dizziness, vertigo, nausea, blurred vision,
nystagmus, vivid dreams, memory deficits, dysphasia,
and impaired motor function. An assessment of
cognitive and memory functioning during a short
duration of treatment with ketamine revealed impair-
ments in working memory and declines in data
encoding into episodic memory. Moreover, in contrast
to different amnestic drugs, it induces semantic
memory impairment.77 Psychedelic effects of ketamine
show psychological dependence long‐term abuse.78

Recurrent ketamine abusers show more damage to
the brain by causing neurotoxicity. Studies in the
developing rodent brain reported that NMDAR antago-
nists induce neurodegeneration through apoptosis, and
enhancement of excitatory neuronal activity in the
brain causes neuronal injury.79 Liao et al. observed the
toxicity of ketamine in an adult brain in two studies.
They reported that brain volume in ketamine abusers

decreases, that is, degeneration in white matter was
observed in the temporoparietal cortex and reduced
gray and white matter volume was observed in the
bilateral frontal cortex. Studies suggest that patients
with a history of drug abuse should not be treated with
ketamine.65 It exerts indirect stimulatory and direct
inotropic effects on the cardiovascular system. Activa-
tion of the sympathetic nervous system induces
stimulation and is associated with inhibition of NE
reuptake, vagal nerve inhibition, and catecholamine
release at peripheral nerves. High or low ketamine
doses induce myocardial depression, which is charac-
terized by increased myocardial oxygen consumption
and cardiac output, tachycardia, and pulmonary
hypertension.80 Some reports also show that ketamine
treatment leads to increased liver enzyme profile81;
continuous low‐dose and high‐dose ketamine infusions
led to a 10% elevated liver enzyme profile and it took 3
months for this to return to normal. Although the
mechanism by which ketamine induces injury in the
liver is not entirely understood, some plausible factors
include an increase in lipid peroxidation along with
the production of free radicals, a decrease in hepatic
oxygen, and allergic hepatitis.82 These findings dem-
onstrate the adverse effects of ketamine when used in
uncontrolled settings. While on ketamine treatment,
patients should be continuously monitored and treat-
ment must be discontinued if any side effects are
observed. Additional side effects of ketamine have been
observed in recreational ketamine users, including
urinary abnormalities, chronic schizotypal behavior,
and memory problems.83 An increase in caspase‐3‐ and
Fluoro‐Jade C‐positive neuronal cells was observed in
the frontal cortex of rats administered six injections of
20 mg/kg ketamine. The typical nuclear condensation
and fragmentation observed under electron microscopy
indicated heightened apoptotic features. Other parts of
the brain also showed increased cell death, which can
lead to neurodegeneration.84

8 | ANATOMICAL VARIATIONS
IN KETAMINE USERS

Neuroanatomical alterations were investigated among
ketamine and non‐ketamine users.83 Patients who had
used ketamine for a more extended period were shown to
have less gray matter volume in the right middle frontal
gyrus and the left superior frontal gyrus.83 In an
additional MRI study, reduced cortical thickness was
observed in various regions of the right frontal cortex in
chronic ketamine users. There was no mention of how
ketamine was administered. To determine how the
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effects of ketamine on the brain increase over time, a
subsequent structural MRI study examined scans of 21
individuals. In chronic ketamine users who had been
addicted to the drug for a long time, between 0.5 and 12
years,85 alterations in both the gray and white matter in
the cerebellum, internal capsule, diencephalon, and basal
forebrain were observed. Prolonged use of ketamine was
linked to substantial cortical atrophy in the occipital,
parietal, frontal cortex, and parahippocampal gyrus.

Interestingly, patients who had been addicted to
ketamine for 3 years or less than 3 years showed less
atrophy than those addicted to ketamine for more than
2 years.85 On 124 chronic ketamine users, a structural
MRI record showed reduced volume of lower gray
matter in the left hippocampus (IH), the right medial
prefrontal cortex, the left globus pallidus, the right
orbitofrontal cortex, and the right nucleus accum-
bens.86 Contrary to other studies, this study found
more gray matter volume in the left caudate nucleus in
ketamine users. Liang et al. (2020) observed structural
changes in ketamine users and discovered that
ketamine users have larger white matter and caudate
nucleus volume. Ketamine users who frequently used
stimulants had even larger white matter volume,
suggesting that ketamine and stimulants have an
addictive effect.86

9 | FUTURE CHALLENGES

The Ketamine and metabolites of ketamine are
essential in developing novel pharmacotherapies that
do not have ketamine's adverse effects, such as
psychotomimetic side effects, sensory perception
alteration, and possibilities for misuse.87 Besides
recent experimental depression models, ketamine
metabolites are also being investigated in animal
studies of pain, inflammation, depression, and suicidal
behavior.87 Extensive clinical use of racemic keta-
mine, (S)‐ketamine, (R)‐ketamine, and significant
metabolites presents an enormous opportunity to
develop novel medicines for unmet medical needs
and to better understand pharmacology–phenotype
connections. Given the current state of knowledge
regarding the safety of racemic and enantio‐pure
ketamine when administered promptly, clinical eva-
luation of these medicines is feasible. The researchers
are now focussing on the developments in alternate
routes of administration, dosing techniques, and drug
combination research. Additionally, when (S) keta-
mine was synthesized from (R, S) ketamine to provide
(S) ketamine as an anesthetic medication in many
countries, (R) ketamine was initially refused. If (R)

ketamine can exert immediate and prolonged anti-
depressant effects in patients with MDD without
causing adverse effects, it may represent as therapeu-
tic drug for several mental diseases. Finally, elucidat-
ing novel molecular and cellular targets involved in
the rapid and prolonged antidepressant effects of
ketamine and its enantiomers will aid in the develop-
ment of novel antidepressants without ketamine's
adverse side effects.82 Furthermore, the breadth of
potential evidence linked to ketamine's various phar-
macological targets provides a unique opportunity to
develop new antidepressants without the harmful side
effects of ketamine. Given these considerations, it is
evident that a basic understanding of ketamine and
ketamine metabolite pharmacology opens up a wealth
of opportunities in both basic and translational
research.15 Recent observations on various physiolog-
ical experiments show that maintaining sleep quality
could be beneficial in reducing the overall pain
sensation and depression‐like symptoms.88,89 Dose–
response studies, especially trials that use more
acceptable modes of administration or different doses,
are therefore strongly advocated.

Alternative methods for boosting ketamine's antide-
pressant effects should also be investigated. The effects of
ketamine can also be seen to be differentially precipitated
due to various health conditions including diabetes,
obesity, cardiovascular conditions, cancer, and other.90–93

Given these proposed mechanisms of action, other drugs
that boost prefrontal plasticity are expected to enhance
an antidepressant effects.94 FDA clearance of S‐ketamine
for treatment‐resistant MDD is a defining moment in the
field of psychiatry. If ketamine or ketamine‐like therapies
for the most severe forms of depression and other mental
illnesses are reintroduced, these medications could
significantly improve the quality of life for millions of
currently untreated individuals. While the efficacy of
ketamine in treating further neuropsychiatric disorders
has not been shown, preliminary studies are intriguing.
As noted previously, preliminary evidence suggests that
ketamine may be useful in the treatment of obsessive‐
compulsive disorder, PTSD, and MDD.69 While these
findings are encouraging for the many people who suffer
from severe depression, they must be weighed against the
reported and possibly unknown adverse effects of long‐
term ketamine treatment. For instance, some case
reports have asserted that ketamine produced fixation,
despite laboratory findings indicating that a single
ketamine infusion did not affect mood in bipolar
individuals.95 During the last two decades, preclinical
and clinical ketamine research has laid the groundwork
for ongoing research into novel methods of regulating
and treating this severe condition.96
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10 | CONCLUSION

Ketamine has been used as an anesthetic agent since the
1960s. Ketamine, as observed in animal research,
clinical trials, and case reports, significantly reduces
PTSD‐related symptoms in a short duration of time.
Similarly, it may have a rapid, substantial antidepres-
sant effect in patients suffering from depression.
Additionally, long‐term safety and efficacy concerns
should be investigated further, and adverse reactions
should be evaluated routinely. However, ketamine
exerts psychedelic and psychotropic effects on the
central nervous system. Psychedelic side effects
are dosage‐dependent and are also dependent on the
dose administered during chronic pain therapy. The
perspective of reality is altered, resulting in panic
attacks, enhanced awareness of sound and place,
auditory and visual illusions, paranoid thinking, and
an inability to manage thoughts. Additional research is
needed to determine the optimal dose and manner of
administration for ketamine's antidepressant efficacy
and to elucidate its modes of action; with future
investigations, ketamine may emerge as a promising
option for treating PTSD and depression in patients who
have failed to respond to more traditional treatments.
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