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Recent large-scale genome-wide association studies (GWAS) have started to identify potential genetic risk loci associated with risk
of suicide; however, a large portion of suicide-associated genetic factors affecting gene expression remain elusive. Dysregulated
gene expression, not assessed by GWAS, may play a significant role in increasing the risk of suicide death. We performed the first
comprehensive genomic association analysis prioritizing brain expression quantitative trait loci (eQTLs) within regulatory regions in
suicide deaths from the Utah Suicide Genetic Risk Study (USGRS). 440,324 brain-regulatory eQTLs were obtained by integrating
brain eQTLs, histone modification ChIP-seq, ATAC-seq, DNase-seq, and Hi-C results from publicly available data. Subsequent
genomic analyses were conducted in whole-genome sequencing (WGS) data from 986 suicide deaths of non-Finnish European
(NFE) ancestry and 415 ancestrally matched controls. Additional independent USGRS suicide deaths with genotyping array data
(n= 4657) and controls from the Genome Aggregation Database were explored for WGS result replication. One significant eQTL
locus, rs926308 (p= 3.24e−06), was identified. The rs926308-T is associated with lower expression of RFPL3S, a gene important for
neocortex development and implicated in arousal. Gene-based analyses performed using Sherlock Bayesian statistical integrative
analysis also detected 20 genes with expression changes that may contribute to suicide risk. From analyzing publicly available
transcriptomic data, ten of these genes have previous evidence of differential expression in suicide death or in psychiatric disorders
that may be associated with suicide, including schizophrenia and autism (ZNF501, ZNF502, CNN3, IGF1R, KLHL36, NBL1, PDCD6IP,
SNX19, BCAP29, and ARSA). Electronic health records (EHR) data was further merged to evaluate if there were clinically relevant
subsets of suicide deaths associated with genetic variants. In summary, our study identified one risk locus and ten genes associated
with suicide risk via gene expression, providing new insight into possible genetic and molecular mechanisms leading to suicide.

Molecular Psychiatry; https://doi.org/10.1038/s41380-023-02282-x

INTRODUCTION
Suicide death is a major public health problem and leading cause
of death [1]. Complex and heterogeneous risk factors for suicide
death include environmental exposures, comorbid clinical condi-
tions, and genetic variation [1–5]. Accumulated evidence suggests
that genetic factors play a critical role in suicide risk, with
heritability estimated to be 30–55% from twin and family studies
[6, 7]. Thus, genetic investigations could advance our under-
standing of the biological basis of suicide risk, leading to
development of more effective prevention strategies.
Well-powered large-scale genome-wide association studies

(GWAS) have begun to identify genetic variants significantly
associated with suicidal thoughts and behaviors including death
[1, 8–10]. Additional independent GWAS studies have also
identified several potential genetic susceptibility loci for suicidal

behaviors in genes including NCAN [9] and SOX5 [1] that are
related to psychiatric conditions (e.g., schizophrenia and depres-
sion). Although GWAS have aided in identifying suicide-related
genetic loci, how these identified loci contribute to suicide risk
remains elusive [11].
Regulation of gene expression is critical for brain function

[12, 13], with widespread dysregulated gene expression observed
in psychiatric disorders associated with suicide [14–16]. For
instance, a previous study reported that five key genes related
to psychiatric diseases have decreased brain expression in
individuals who died by suicide [17]. The vast majority of
disease-associated genetic variants from human disease GWAS
are located in non-coding regulatory regions, some of which may
be associated with gene expression, which represent expression
quantitative trait loci (eQTLs) [18]. That is, suicide-risk associated
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single nucleotide polymorphisms (SNPs) may play a significant
role in risk of suicide by influencing gene expression in the brain
as eQTLs, potentially leading to altered behavior or dysregulating
other complex processes.
Integrative studies of GWAS and eQTLs have proven to be a

powerful approach to identify novel genetic susceptibility loci
with modest effects on various complex diseases [19–23]. The
stringent significance thresholds required for GWAS to avoid
detecting false positive genetic loci due to multiple testing limit
genetic discovery to SNPs with small-to-moderate effects on
complex diseases, potentially missing heritability [22]. Genomic
association tests prioritizing eQTLs in regulatory regions can be
useful in increasing analytic power and allowing discovery of
actual mechanisms of risk through investigating only the subset of
genome-wide SNPs that are associated with changes in gene
expression [22]. The eQTL SNPs can play critical roles in complex
trait phenotypes. Indeed, studies of psychiatric disorders integrat-
ing GWAS and eQTLs have successfully identified novel genetic
loci that were not detected with GWAS alone (e.g., major
depressive disorder (MDD) and schizophrenia) [20, 24–28]. Addi-
tionally, a recent study showed psychiatric disorders-related
genetic variants are enriched at regulatory regions (e.g., histone
modifications, DNA accessibility, and enhancer-promoter interac-
tion regions affecting gene expression) [29] Although genomic
studies integrating eQTLs in regulatory regions have been
performed for several psychiatric disorders, to the best of our
knowledge, this approach has not been taken for suicide death.
Here, we aim to identify novel regulatory suicide-associated

genetic loci affecting gene expression by integrative analysis of
multi-layer complimentary data, including genomic, transcrip-
tomic, histone modification ChIP-seq, Hi-C, and clinical electronic
health record (EHR) data. We initially obtained genome-wide
brain-regulatory eQTLs from multiple available public resources.
We then performed an association test of the eQTLs with suicide
risk by analyzing genomic data generated from unrelated suicide
deaths and ancestry-matched controls. In addition, we conducted
a gene-based analysis to identify genes whose expression changes
contribute to suicide risk [30]. Our study provides new insight into
the genetic mechanisms of suicide.

MATERIALS AND METHODS
An overview of the research design is illustrated in Fig. 1. The
comprehensive brain eQTLs within regulatory regions (e.g., enhancer,
promoter, and gene body) were obtained by systematically integrating
multi-layer biological data including histone modification ChIP-seq data
(e.g., H3K4me3), ATAC-seq, Hi-C data, and eQTL resources. WGS and clinical
EHR data further were employed to identify suicide-associated SNPs acting
as regulatory eQTLs and to evaluate their clinical attributions.

Utah suicide death cohort ascertainment
The Utah Suicide Genetic Risk Study (USGRS) has a sample of >8000 DNAs
from population-ascertained suicide deaths. Suicide deaths have been
ascertained through a long-term collaboration with the centralized statewide
Utah Office of the Medical Examiner (OME). DNA has been extracted from
whole blood by using the state-of-the-art methods (https://ctsi.utah.edu/
cores-and-services/ctrc/dna-extraction-facility). This study is approved by
Institutional Review Boards from the University of Utah, Intermountain
Health, and the Utah Department of Health and Human Services.

Phenotypic electronic health records (EHR) data
Identifiers from suicide deaths were securely transferred from the OME
directly to personnel at the Utah Population Database (UPDB, https://
uofuhealth.utah.edu/huntsman/utah-population-database). The UPDB is a
state-wide database that contains records on over 12 million individuals,
including demographics, two decades of health records data, and deep
genealogical data. After linking suicide deaths, identifiers were stripped
before data were given to the research team to protect privacy and
confidentiality. Linked diagnostic electronic health records were from

statewide inpatient and ambulatory care encounters through Utah State
Health Department records in addition to data from outpatient encounters
from the largest two clinical data providers in the state (University of Utah
Healthcare and Intermountain Health), representing ~85% of the state’s
outpatient encounters. The inpatient and outpatient International Classi-
fication of Diseases (ICD-9; https://www.cdc.gov/nchs/icd/icd9.htm and
ICD-10; https://www.cdc.gov/nchs/icd/icd10cm.htm) codes were curated
within the UPDB to eliminate duplication. For efficient characterization of
diagnoses, we collapsed the diagnostic data into interpretable categories
using hierarchical classification derived through expert clinical adjudication
(Drs. Keeshin, Docherty, and Monson). For this study, we included
categories with prior evidence for association with suicide risk (alcohol
related disorders, asthma, anxiety, neurodegenerative disorders, bipolar
disorder, depression in a broad and narrow sense, all drug related
disorders, specific opioid misuse, eating disorders, schizophrenia, pain,
sleep disorders, and suicidal ideation).

Whole-genome sequence data of suicide deaths and controls
WGS data was generated on 1053 Utah suicide deaths by using Illumina
NGS technology with an average read depth of at least 20×. Alignment and
variant calling and joint genotyping of suicide deaths and control WGS
datasets was performed at the Utah Center for Genetic Discovery (UCGD)
Core Facility, part of the Health Sciences Center Cores at University of Utah.
The UCGD pipeline called variants using the Sentieon software package
[31] which incorporates GATK best practices [32]. Sequence reads were
aligned to GRCh38 (Genome Reference Consortium Human Build 38) using
BWA-MEM (Burrows-Wheeler Aligner) [33]. The Haplotyper algorithm in
Sentieon was used to produce genomic Variant Call Format (gVCF) files.
Suicide death gVCF files were combined and jointly genotyped with 1241
control samples from three sources. 622 individuals were from the 1000
Genomes Project cohort (1000G) [34]. Five hundred and twelve individuals
were from multigenerational Centre d’Etude du polymorphisme humain
(CEPH) families [35]. Ninety-six individuals were from a study of longevity
of healthy elderly individuals form Utah [36]. The final VCF file with suicide
deaths and controls was recalibrated to limit false positive calls.

Ancestry estimation and sample relatedness
We confined our analyses to unrelated suicide deaths and controls that
had estimates of at least 90% non-Finnish European (NFE) ancestry. This
threshold represents a conservative ancestry estimate as most USGRS
samples are predominately European. We estimated the ancestry of the
samples as a composition of five ethnicities (European, African, East Asian,
Native American, South Asian) using the 1000 Genomes Project data
(https://www.internationalgenome.org/data/) as a reference. We used a
modified version of the pipeline presented by Giulio Genovese at https://
github.com/freeseek/kgp2anc. First, our dataset was combined with the
1000G phase 3 dataset. SNPs were then pruned using the “--indep-
pairphase” command in plink 1.9 [37]. PCA was run on the set of pruned
SNPs with plink 2.0 [38]. Using the known estimated ancestry for AMR [34]
and presumed ancestry for most other samples as the basis, we estimated
the ancestry of every other sample as a combination of the 5 known
ancestries using linear regression on the space of top 10 PCs with
Mahalanobis distance defined by those top 10 PCs. Estimates of pairwise
identity by descent (IBD) were calculated using Plink 1.9. Pairs of related
individuals (third degree or closer) were identified with pi-hat values
greater than 0.12. One member of each of the identified related pairs was
randomly removed. After filtering our dataset included 986 suicide deaths
and 415 control samples (1000G 332, longevity 61, CEPH 22).

PsychArray genotyping data for confirmation analyses
Additional independent suicide deaths (n= 4657) were genotyped using
the Illumina Infinium PsychArray platform (https://www.illumina.com/
techniques/microarrays/array-data-analysis-experimentaldesign/
genomestudio.htm), which assesses 593,260 single nucleotide polymorph-
isms (SNPs). Generation, processing, quality control and imputation of
genotyping array data from suicide deaths in USGRS has been previously
described [1, 5, 9]. We explored the imputed array data to confirm the
results of our genomic analysis with WGS data using analysis methods
described below.

Brain eQTL data
Comprehensive brain eQTL data analyzed in this study were derived from
the GTEx database (Supplementary Table S1). GTEx is a public resource for
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the study of gene expression and its regulation by analyzing WGS, whole-
exome seq, and RNA-seq [39]. It provides a comprehensive eQTL resource
observed from 54 healthy tissue sites from approximately 1000 individuals
throughout the human body, including the brain. More detailed
information of these data is described in the original study. We considered
statistically significant eQTLs according to the criterion of adjusted p-value
with false discovery rate (FDR) < 0.05 for each of 13 brain regions as
described in Fig. 1.

Annotation of regulatory regions
To obtain eQTLs in regulatory regions, we integrated 13 histone
modification ChIP-seq (i.e., H2AFZ, H3F3A, H3K27ac, H3K27me3,
H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac,
H3K9me2, H3K9me3, and H4K20me1), ATAC-seq, and DNase-seq data

processed by Encyclopedia of DNA Elements (ENCODE) project [40]. We
first searched and downloaded experimental result data in a bed file
format for narrow peaks observed from the histone modification data of
the human brain described in the ENCODE project. These peaks include
chromatin structure dynamic information that refers to regulatory regions.
Furthermore, we combined high-throughput chromosome conformation
capture (Hi-C) data that capture genome-wide chromatin interactions in
cell nuclei to annotate enhancer regions that are regulatory regions distal
from transcription start sites [41]. We obtained the comprehensive Hi-C
data results of various cell types including the brain from the 3D genome
browser. This browser collects independent studies on chromatin
conformation (Hi-C) data [42]. Finally, we annotated robust regulatory
regions by overlapping ENCODE histone modification peaks and enhancer
regions. We included eQTLs within these annotated regulatory regions as
an association test set in this study.

Fig. 1 The study design for genomic analyses in comprehensive regulatory brain eQTLs. First, we identified 571,733 comprehensive brain
eQTLs by integrating multi-layer data from different resources, as follows: (1) 1,206,469 eQTLs identified from 13 brain regions in Genotype-
Tissue Expression (GTEx) project, (2) chromatin accessibility regions with histone modifications ChIP-seq, DNase-seq, and ATAC-seq in the
Encyclopedia of DNA Elements (ENCODE) project, and (3) Hi-C data annotating enhancer from chromatin interaction loop regions in 3D
genome browser. The whole-genome sequence (WGS) data from 986 suicide deaths of non-Finnish European (NFE) ancestry and 415
ancestrally matched controls was analyzed. Independent suicide deaths with genotyping array data (n= 4657) and controls from the Genome
Aggregation Database were further investigated to replicate the results from WGS analysis. After quality control, a total of 440,324 eQTLs were
retained to perform genetic association analysis at the individual-SNP level and at the gene level. For the gene-level analysis, integrative
analyses were conducted using Sherlock. To explore evidence of dysregulated expression of identified genes in psychiatric disorders closely
related with suicide risk, we explored two independent transcriptomic RNA-seq datasets measured in the disorders: (1) Yale-autism spectrum
disorder (ASD) and UCLA-ASD studies in PsychENCODE for brain samples of ASD (n= 43) and ASD matched healthy control (n= 65) and
BrainGVEX, CommonMind Consortium (CMC), and CMC-HBCC studies in PsychENCODE for brain samples of European ancestry individuals
with bipolar disorder (BD, n= 145), schizophrenia (SCZ, n= 346), and healthy controls (n= 559), and (2) Korean mental health (KMH) genomics
study for whole-blood samples of individuals with major depressive disorder (MDD, n= 39), suicide attempt (SA, n= 56), and healthy controls
(n= 87). We further investigated transcriptomic datasets of suicide deaths: (1) GEO id: GSE66937 including 10 suicide deaths and 7 controls for
each of three brain regions: amygdala, prefrontal cortex, thalamus, and 9 suicide deaths and 7 controls for hippocampus region and (2)
GSE101521 including 21 suicide deaths and 29 controls. Finally, we merged electronic health record (EHR) data of ascertained samples for
genomic analysis to identify specific co-occurring diagnostic phenotypes in suicide associated with identified risk loci.

S. Han et al.

3

Molecular Psychiatry



Single genetic association test
Our primary analysis in this study was with WGS data. Although this
includes a smaller number of samples compared to the genotyping array
data, WGS data provides much higher resolution and covers nearly all
possible eQTLs, such as those in regulatory regions, compared with array
data. Unconditional generalized logistic regression model (GLM) was
formulated to test for variant association with suicide death for each eQTL
from WGS data, estimating p-values, odds ratio (ORs), and 95% confidence
intervals (CIs) by using R. This association test was performed using an
additive effect model, adjusting for sex and ancestry principal components
(PCs) to account for possible residual effects of population stratification
and genomic relatedness. We tested only eQTLs with biallelic genotypes
and minor allelic frequency (MAF) > 0.05. We eliminated any eQTLs where
genotypes were missing in >10% of individuals (missing call rate > 0.1
were excluded). Furthermore, for each association test, we retained
genotypes only from individuals with average read depth ≥ 20 and
genomic quality score (GQ) > 30.
After association tests for all eQTLs, we obtained significant index eQTLs

with a statistical criterion (FDR < 0.1) after LD clumping that retained eQTLs
with the lowest p-value in each linkage disequilibrium (LD; r2 ≥ 0.6) block.
Next, to verify eQTLs associated with suicide death, we additionally
explored genotyping array data from independent USGRS suicide deaths
and an independent control sample from the Genome Aggregation
Database (gnomAD; v3.1.2) [43]. GnomAD contains aggregated frequency
data from various large-scale WGS reference studies including 76,156 whole
genomes [43]. We assessed if (1) allele frequencies from the array data of
suicide-eQTLs identified by WGS data were consistently different between
suicide deaths and controls, (2) suicide-eQTLs which were found from both
WGS and array data were also consistently replicated using gnomAD
control frequency data. Since gnomAD provides only allele frequencies of
the aggregated WGS data, individual genotypes and demographic
information were not available from this source. The frequencies in
gnomAD were calculated from individuals of non-Finnish European
ancestry, selecting for those deemed as non-neuropsychiatric (NFE-NN) to
avoid possible confounding originating from data from individuals of other
ancestry and/or from individuals with neuropsychiatric conditions.

Gene-based analysis using Sherlock integrative analysis
We performed genomic analyses to identify suicide-associated eQTLs in
regulatory regions that potentially confer suicide risk by affecting gene
expression of their gene targets. The Sherlock integrative framework
explores potentially causal relationships between gene expression affected
by eQTLs and disease. This strategy has previously identified novel gene
associations with psychiatric disorders [15, 44]. The method integrates
summary-based results of eQTLs and SNP association signals from
genomic analyses through a Bayesian statistical framework. We utilized
the Sherlock integrative analysis to further evaluate suicide risk-gene
expression affected by eQTLs through integrating our genetic association
and GTEx eQTLs results. For each gene, the Sherlock integrative analysis
tool provides a score as LBF (logarithm of Bayes factor, which estimates the
probability of a gene-suicide relationship) and p-value. A positive LBF
indicates that a specific gene affected by eQTLs is likely associated with
suicide risk, while a negative LBF suggests that the gene does not have an
association. For each genomic analysis result from WGS and array data, we
comprehensively identified genes associated with suicide based on the
criteria of LBF > 0 and p < 5e−3. We then defined only HUGO protein
coding genes where our results replicated across WGS and array data.

Expression analysis of suicide susceptibility genes
The Sherlock integrative analysis method discovers trait-associated genes
that have a predicted causality through the linkage between gene
expression changes and suicide risk. Therefore, gene expression analysis of
suicide deaths compared with control samples could theoretically allow us
to verify the genes identified by this gene-based analysis.
There are RNA-seq datasets measured from different psychiatric

disorders generated by two independent datasets: (1) PsychENCODE
[45, 46] including brain samples of autistic individuals (autistic, n= 43) and
non-autistic matched controls (n= 65) and of Caucasian individuals with
bipolar disorder (BD, n= 145), schizophrenia (SCZ, n= 346), and BD-SCZ
matched controls (n= 559), (2) Korean mental health (KMH) disorder
genomics study [16] for whole-blood samples of individuals with major
depressive disorder (MDD, n= 39) and suicide attempters (SA, n= 56), and
healthy controls (n= 87) (Supplementary Table S2). PsychENCODE provides
a public resource of transcriptomic data by aggregating RNA-seq generated

from different projects. We analyzed the ASD and its matched control data
generated from UCLA-autism spectrum disorder (ASD) and Yale-ASD
projects, and BD, SCZ, and their matched control data generated from
BrainGVEX, CMC, and CMC-HBCC projects. For PsychENCODE expression
data, we downloaded and analyzed the normalized expression matrix file
based on fragments per kilobase of exon per million mapped fragments
(FPKM) values that are provided from the PsychENCODE database. For the
second dataset (KMH), we obtained raw fastq files of all samples which
were individually mapped to the human reference genome (GRCh38). Next,
gene expression was estimated as TPM values by using RSEM (v.1.3.0) [47].
After that, we compared expression levels for each group with controls:
ASD vs. control, BD vs. control, SCZ vs. control, MDD vs. control, and SA vs.
control by using logistic regression with sex and age as covariates. Project
study variables (e.g., BrainGVEX and CMC) were additionally considered as a
covariate to avoid a potential bias from different studies. We defined
statistical significance for differential expressed genes with FDR < 0.05.
In addition, we investigated transcriptomic expression datasets mea-

sured from brains of individuals that died from suicide generated by two
independent cohorts (Supplementary Table S2): (1) transcriptomic array
data measured from four different brain regions of suicide deaths and
decreased controls; 10 suicide deaths and 7 controls for each of amygdala,
prefrontal cortex, and thalamus regions, and 9 suicide deaths and 7
controls for hippocampus region (GEO id: GSE66937) and (2) RNA-seq data
of suicide deaths (n= 21) and controls (n= 29) (GEO id: GSE101521 [14]).
For the array data, we downloaded and analyzed normalized expressions.
For the RNA-seq data, data were processed with the GRCh38 human
reference genome using the same methods as with the KMH dataset,
described above. Due to the relatively small sample size, we considered
significant differentially expressed genes to be those with p-value < 0.05 as
determined empirically through 1000 repeated randomizations of the data.

Investigation of demographic and phenotypic characteristics
of suicide death samples with suicide-risk genetic variants
To further evaluate if there were clinically relevant characteristics in suicide
deaths associated with identified genetic variants, such as a specific suicide
subtype, we explored the International Classification of Diseases (ICD)
diagnostic codes (ICD-9/ICD-10) in EHR data of our analyzed individuals
who died from suicide. Details of cohorts that have EHR data are presented
in Table 1. We characterized psychiatric phenotypes by aggregating ICD
codes in EHR data as previously described [9] for relevant exposures and
psychiatric diagnoses. We compared demographic and diagnostic
information between suicide deaths with and without any of the genetic
findings identified from the previous analyses.

Sex differences
Since gene expression differences in brain in psychiatric phenotypes and
suicide deaths have been characterized by substantial sex differences [48],
we performed a secondary expression analysis stratified by sex in two
psychiatric disorder datasets and two SD datasets to identify additional
differentially expressed genes in females vs. males, specifically. We defined
male-specific genes as those with FDR < 0.05 in males but > 0.05 in
females, and female-specific genes as those with FDR < 0.05 in females but
> 0.05 in males.

RESULTS
A detailed summary of the suicide death cohorts analyzed in this
study is provided in Table 1. The controls with jointly called WGS
(N= 415) were unrelated adults of European ancestry, and were
51.1% female. Controls were ascertained for absence of major
psychiatric disease.

Individual eQTL association analysis
As shown at the Fig. 1 and supplementary Table S1, we identified
a total of 1,206,469 eQTLs significantly associated with 17,976
target gene expression levels (FDR < 0.05) in multiple brain
regions from the GTEx resource. Among them, 717,852 eQTLs
were located in comprehensive chromatin accessibility (e.g., open)
regions from different histone modification ChIP-seq, DNase-seq,
and ATAC-seq, or were eQTLs that fell within chromatin
interaction regions from Hi-C datasets. We then identified
571,773 eQTLs that overlapped between ENCODE and Hi-C data
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as potentials for our genomic association analysis test set. Among
these regulatory brain eQTLs, 440,324 eQTLs passed the quality
standards based on MAF, read depth, GQ, and call rate (See the
Materials and Methods) with WGS data, resulting in our final eQTL
association test set. Information on the proportions of eQTLs
across all brain regions is presented in Supplementary Table S3.
After LD clumping, there were 46,075 index eQTLs that had the

strongest associations with suicide for each LD block. Four eQTLs
met our criteria for statistically significant associations with suicide
death based on multiple testing correction (FDR < 0.1) from WGS
genomic analysis. Further analyses combining genotyping array
data from independent USGRS suicide death samples and
gnomAD controls were performed to control potential bias from
differences in molecular platforms. These analyses eliminated
three eQTLs, with one remaining significant eQTL (Fig. 2; rs926308,
chr22: 32385435, p= 3.24e−06): the three eQTLs were removed in
Fig. 2. The QQ (quantile-quantile) plot and Manhattan plot from
the WGS eQTL association test is depicted in Fig. 2, showing a
genomic inflation factor (λ) of 1.054.
Variant rs926308 lies within an LD block with FDR= 0.078

(p= 3.24e−06) with an odds ratio (OR) per alternative allele
A= 1.67, 95% CI: 1.35–2.08 (Fig. 2C). A regional plot of this SNP is
depicted in Fig. 3A. GTEx data (Fig. 3B) shows that the risk allele
rs926308-T decreases RFPL3S expression levels in pituitary
(p= 3.1e−6) and caudate (p= 3.0e−6).

Genes leading to suicide risk through Sherlock analysis
integrating eQTLs and WGS results
Our study was performed under the assumption that gene
expression changes could confer suicide risk, and since one gene

expression perturbation could be associated with multiple modest
effect eQTLs, gene-based analysis collecting multiple genetic
variants could uncover further novel genes that have a putative
role in suicide risk. To infer genes whose expression may
contribute to suicide risk, we utilized Sherlock integrative analysis
to systematically integrate summary-based results of SNP associa-
tions from our genomic analyses and eQTLs in multiple brain
regions from GTEx. We considered genes to be potentially
significant for suicide risk when the genes were replicated in
Sherlock analyses with results from WGS analysis and genotyping
array analysis. Using this approach, we identified a total of 20
genes that consistently resulted from both analyses (Supplemen-
tary Table S4). That is, for each gene, at least one eQTL is
associated not only with altered gene expression but also with
suicide risk simultaneously, suggesting that the eQTLs could
contribute to suicide risk by affecting their target gene expression
(Supplementary Table S4).

Differential expression analysis
The 20 genes that we found from integration of association
results and eQTL results were identified under the inference
that dysregulation of their expression could potentially have a role
in suicide risk. We investigated the expression of the 20 genes to
find additional lines of evidence that expression changes could be
related to conditions associated with suicide risk. There are
publicly available RNA-seq datasets measured from different
psychiatric disorders (e.g., ASD, BD, SCZ, MDD, and SA). Therefore,
we assessed differentially expressed genes by analyzing those
datasets to find evidence of potential roles of the 20 genes, since
psychiatric disorders could be potentially associated with
suicide risk. We compared gene expression between psychiatric
disorders and healthy controls generated from two independent
studies and between suicide deaths and controls from two
additional independent studies (See the Materials and Methods
section).
We identified nine genes that have significantly different gene

expression in at least one of five different psychiatric disorders
compared to the control groups (Fig. 4 and Supplementary
Table S5); one additional gene, ZNF501, was suggestive (FDR=
0.058). For example, expression of ZNF501 was observed to be
decreased in ASD samples compared to controls (p= 7.64e−03).
Expressions of BCAP29 (2.34e−04), CNN3 (1.59e−06), IGF1R (1.81e
−07), PDCD6IP (5.5e−10), SNX19 (1.65e−04) were increased in
SCZ, while NBL1 (2.46e−12) expression was decreased in SCZ.
Furthermore, expressions of IGF1R (1.59e−04), KLHL36 (2.91e−03),
PDCD6IP (5.43e−03), and SNX19 (1.48e−03) were all observed to
be increased in SA. However, ARSA gene expression was observed
to be increased in BD (3.62e−04), but was decreased in SCZ (4.50e
−03). We further identified that ZNF501, ZNF502, IGF1R, SNX19,
KLHL36, and BCAP29 were differentially expressed in suicide death
(SD) (Supplementary Table S6 and Fig. 4A). ZNF502 was unique to
SD, but the other five genes overlapped with the results from
other psychiatric disorders above (Fig. 4A).
Therefore, we found additional evidence that expression

changes in ten genes by eQTLs may have a role in molecular
mechanisms that are underlying suicide risk potentially shared
with risk of psychiatric disorders. Detailed results of the ten
identified genes are provided in Supplementary Tables S5 and S6.
Of note, for each of seven genes (i.e., ZNF501, ZNF502, CNN3,

IGF1R, PDCD6IP, SNX19, and KLHL36), expression regulation was
shown to have a consistent direction in different layers of data
from different resources. For instance, SNX19 gene expression was
observed to be increased in SCZ from PsychENCODE, SA from
KMH, and SD from suicide death array dataset (Fig. 4A, D). In
addition, the expression of SNX19 tends to increase with allele T of
rs7925664 (Fig. 4B), and our genomic analysis revealed that
frequency of the rs7925664-T was observed to be significantly
increased in suicide (Fig. 4C): OR= 1.54 [CI: 1.25–1.91] from WGS

Table 1. Demographic and clinical information for Utah suicide
deaths analyzed in this study.

Affection status Suicide deaths

WGS data Array data

N 986 4657

N of electrical medical records 936 4001

Demographic information

Female, n (%) 274 (28.1) 1,015 (21.8)

Age, mean (SD) 32.1 (13.4) 41.5 (17.5)

Clinical characteristics, n (%)

Alcohol related disorders 269 (28.7) 1002 (25)

Asthma 154 (16.4) 497 (12.4)

Anxiety 493 (52.6) 1618 (40.3)

Bipolar disorder 396 (42.3) 567 (14.1)

Broad depression 593 (63.3) 2047 (51.0)

Dementia (Neurodegenerative) 128 (13.6) 493 (12.5)

All drug related disorders 369 (39.4) 1141 (28.4)

Eating related disorders 21 (2.2) 47 (1.1)

Major depressive disorder 366 (39.1) 1216 (30.3)

Obesity 192 (20.5) 865 (21.5)

Opioid misuse 171 (18.2) 518 (12.9)

Pain 651 (69.5) 2802 (69.9)

Schizophrenia 59 (6.3) 116 (2.8)

Sleep related disorders 276 (29.4) 1132 (28.2)

Suicidal Ideation 279 (29.8) 754 (18.8)

Demographic and clinical characteristics are described separately for suicide
deaths with whole-genome sequencing (WGS) data and those with array
data. Prevalence of clinical diagnoses from linked diagnostic electronic health
records data is given for categories with known associations with suicide risk.
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Fig. 2 Individual-SNP-based associations with suicide in a genome-wide WGS eQTL analysis. A the quantile-quantile plot with p-values of
our genomic analysis. Y-axis refers observed -log10 of p-values and X-axis indicates expected −log10 of p-values under H0. B Manhattan plot
describing SNPs associated with suicide in our analysis. Y-axis and X-axis reflect observed −log10 of p-values and chromosomes, respectively.
Red line indicates FDR corrected statistical significance (FDR < 0.1). C One index eQTL was detected with our significant criteria of FDR < 0.1.

Fig. 3 Results of rs926308 (chr22:32385435) identified by our SNP-level association study. A A regional plot for rs926308 on chromosome 22.
The Hi-C line refers to chromatin interaction loops. Other lines indicate chromatin accessibility regions observed from histone modifications ChIP-seq,
DNase-seq, and ATAC-seq data. Cyan colors are ChIP-seq peak regions overlapped in SNPs within the LD block of rs926308, while gray areas do not.
B A violin plot of RFPL3S gene expression according to the genotypes of rs926308 generated from the Genotype-Tissue Expression (GTEx) project.
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data and OR= 1.31 [1.13–1.52] from array data. That is, rs7925664
may act as a risk variant for suicide by increasing SNX19
expression, with a similar pattern being observed in SCZ, SA,
and SD.

Sex differences
We identified three male-specific genes (ARSA, IGF1R, and SNX19)
and two female-specific genes (LEMD2 and PCP4) in psychiatric
disorders (Supplementary Table S7). However, none of these
genes were significant in SD datasets.

Phenotypic attributes of suicide deaths with genetic variants
When comparing individuals who died from suicide with and
without significant variation, as identified above, there was no
significant difference in sex distribution or suicide death age. In
addition, no different demographic or diagnostic variables
achieved significance according to our criteria (FDR < 0.05)

(Supplementary Tables S8 and S9). However, of note, we observed
one suggestive association of lower prevalence of BP between
suicide deaths with and without rs12444911 in both of WGS
(p= 0.01) and array (p= 0.02) cohorts. Approximately 38.6% of
individuals who died from suicide who had the alternative allele T
had a BD diagnoses, while 46.1% of those with the reference allele
had a BD diagnosis in the WGS cohort; 12.8% and 15.1% of deaths
had a BD diagnosis with and without the allele T in the array
cohort. That is, lower prevalence of BD was observed in suicide
deaths with the allele T than those without the allele. Finally,
neither age nor sex significantly impacted the relationships
between genetic variants and EHR diagnosis.
Furthermore, we evaluated whether there are sex-specific

associations of ICD diagnoses in suicide deaths with the sex-
specific five identified gene eQTLs, as done with the ICD analysis
presented above, but did not find sex-specific ICD diagnoses
associated with the eQTLs (data not shown).

Fig. 4 Significantly differentially expressed genes among the suicide-associated genes observed from Sherlock integrative analysis. A A
heatmap of differential expression in each psychiatric disorders compared to the controls. Red and green shading indicates downregulated
and upregulated expression, respectively, in the given psychiatric disorders and suicide deaths. eQTL annotation above the heatmap
represents the direction of each eQTL, with red and green reflecting negative and positive beta values between gene expression, respectively,
and noting that the allele for the eQTL is indicated in the box. The genetic direction for suicide annotation represents the topmost line of the
figure, with purple and yellow referring to the given eQTLs direction as a risk or protective allele, respectively. For example, for CNN3 gene,
eQTLs direction of A of rs9432595 (showed at B) is positive that expression tends to increase in allele A of the SNP, and this allele A was
observed to be risk allele from our suicide WGS genomic analysis. B Violin plots of expression of the ten identified genes according to eQTLs
generated from Genotype-Tissue Expression (GTEx) project. C A regional plot for SNX19 on chromosome 11. The Hi-C plot demonstrates
chromatin interaction loops. Other lines indicate chromatin accessibility regions observed from histone modifications ChIP-seq, DNase-seq,
and ATAC-seq data. Cyan colors are ChIP-seq peak regions overlapped in SNPs within the LD block of rs7925664, while gray areas do not.
D Boxplot demonstrating that SNX19 was significantly upregulated in individuals with schizophrenia, suicide attempters, and suicide deaths
from three independent RNA-seq datasets: (1) CommonMind Consortium (CMC) in PsychENCODE, (2) Korean mental health (KMH), and (3)
suicide death dataset 1 (GEO id: GSE66937). X-axis and Y-axis refer data projects and normalized gene expression, respectively. ASD autism
spectrum disorder, BD bipolar disorder, SCZ schizophrenia, SA suicide attempter, MDD major depressive disorder, SD1: Suicide death 1 (GEO
id: GSE66937), and SD2: Suicide death 2 (GEO: GSE101521).
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DISCUSSION
In this study, we analyzed USGRS WGS and genotyping array data
in combination with rich regulatory data resources to identify new
genetic loci and genes involved in risk of suicide. We prioritized
brain-regulatory eQTLs with potential causal effects on the
modification of brain functional gene pathways. Since suicide
and associated psychiatric disorders are genetically complex, our
strategy to discover eQTL SNPs with potentially interpretable
effects on gene function is essential to understanding additional
genetic factors contributing to suicide risk, which could be missed
by GWAS, as has been identified in other integrative studies [22].
Results revealed one novel genetic locus impacting Ret Finger
Protein-Like 3S (RFPL3S) gene expression. This result was also
replicated through rigorous investigation within two independent
suicide cohorts and two independent control resources. Addition-
ally, we systemically integrated our genetic association results and
brain eQTLs using a Sherlock integrative analysis, identifying 20
genes where expression changes may contribute to suicide risk.
Further comparative transcriptomic analysis showed that ten of
these 20 genes may also be dysregulated in other psychiatric
disorders, with six being specifically identified within SD,
providing potential pathways of gene expression perturbations
in suicide risk.
The identified risk genetic variant, rs926308, is a RFPL3S eQTL

where the alternative allele decreases RFPL3S gene expression
(Fig. 3B) in a brain-specific manner (See Fig. S1). Since the rs926308
SNP is closer to other genes, such as RTCB, we investigated the
GTEx dataset to see if this SNP is also associated with other gene
expressions. We found significant associations with expressions of
SLC5A4 and RTCB in testis and colon, respectively, but no
associations with any genes expressed in brain tissues (Fig. S2).
RFPL3S is one of the family of Ret finger protein-like proteins that
are critical in primate neocortical development [49, 50]. Moreover,
RFPL3S is significantly associated with arousal [49], a domain that is
part of the National Institute of Mental Health Research Domain
Criteria (RDoC) framework [51, 52]. This domain encompasses
broad aspects of arousal related to stress response and anxiety
[53], as well as sleep-wake changes [54]; abnormalities in these
areas are plausible contributors to suicide risk. Our results warrant
further study of RFPL3S, including downstream effects and
developmental consequences of altered RFPL3S expression, and
exploration of regulatory changes in other genes related arousal.
Finally, this result should be interpreted with some caution as the
rs926308 allele frequency (AF) was noted to differ between our two
control datasets: jointly called 415 general population controls
(AF= 0.67) and gnomAD (0.712) controls. This difference may
result from presence of subclinical psychiatric conditions or
residual population structures. However, despite this observation,
both WGS and array suicide showed consistent increased AF
compared to these two control sets.
Our Sherlock integrative analysis found 20 genes where

expression changes may contribute to suicide risk, with nine of
these genes having evidence of differential expression in
psychiatric conditions, including schizophrenia (SCZ), autism
spectrum disorder (ASD), depression, stress response, and
neurodegeneration. Specifically, findings implicated variants
associated with overexpression of SCZ-associated genes: SNX19
[55–58], CNN3 [59, 60], BCAP29 (opposite direction of prior findings
[61]), and IGF1R (opposite direction of prior findings [62]). ZNF501
was found to have diminished expression with the associated
variant in this study, consistent with prior ASD [63] and depression
studies [64]. KLHL36 has been previously associated with stress
response by gene-based analysis from a GWAS of psychological
resilience self-assessed by questionnaire [65, 66]. PDCD6IP was
previously observed to be upregulated in MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine) induced neurodegeneration in
mouse models [67]. Perturbation of the regulation of any one of
these genes could contribute to the disruption of key emotional

regulation and expression, perceptual, or developmental pro-
cesses that could lead to greater risk of suicidal behavior.
However, further research will be required to identify specific
outcomes and downstream effects from such altered expression in
the developing brain and to identify how such changes might
alter suicide risk.
Our expression analysis results implicating different psychiatric

conditions may provide an insight into putative roles of identified
susceptibility genes in suicide risk that is shared with these other
disorders. However, since co-occurring psychopathology does not
fully account for suicide risk, the other 11 genes that did not have
differential expression in any psychiatric disorders can still be
considered as candidates specifically for suicide risk. For example,
ZNF502 was observed to be significantly differentially expressed in
SD data. Also, while SLC18A2 does not have differential expression
in other psychiatric disorders, it is one of several serotonergic
genes that facilitates the transport of vesicles containing serotonin
to the presynaptic neuron, a process that has been associated
with suicidal behavior [68–70]. Also, LEMD2 is associated with
cognition through mediating neuronal activity [71]. That is, these
genes may be associated with suicide risk via different mechan-
isms independent from the psychiatric conditions we investigated.
Although these genes were not detected in the available SD gene
expression datasets, expression analysis with larger SD sample
sizes will be required to identify further evidence. In summary, our
Sherlock integrative analysis and expression analysis provides
evidence of putative susceptibility genes modulated by eQTLs and
their pivotal role via dysregulated expression in suicide risk.
Analyses using Sherlock provide a powerful approach to explain

the relationship between gene expression affected by eQTLs and a
disease of interest by integrating results of eQTLs and genomic
association analysis. This approach assumes co-occurrence
between effects of eQTLs on gene expression and evidence of
association of the eQTLs with a disease [30]. For example, to
establish the fact that the expression of a gene indeed confers
disease risk, all eQTLs targeting expression of the gene must also
be associated with disease risk since the eQTLs can change the
gene expression. If one of the eQTLs is not significantly associated
with disease risk, this will negatively affect the score of a Sherlock
integrative analysis, reflecting the result that gene expression
controlled by that eQTL does not affect disease risk. Based on this
assumption, the gene-based Sherlock integrative analysis calcu-
lates the score indicating a probability of relationships between
gene expression affected by eQTLs and disease risk. This analysis
allows identification of suicide-risk eQTL SNPs aggregated at the
gene level although the individual eQTL SNPs may have not
achieved genome-wide significance in the single SNP-level
association test.
Our genomic analysis with the Utah suicide cohorts has several

strengths. First, our study explored genomic data generated from
confirmed suicide deaths, rather than from individuals with non-
lethal suicide-related behaviors which pose measurement chal-
lenges and may reflect relatively distinct and more heterogeneous
phenotypes. The unambiguous and more severe outcome of
suicide death may increase statistical power to detect genomic
associations [9]. In addition, previous studies of suicide risk often
focus on suicidal behaviors among individuals with specific
psychiatric diagnoses. While this design may reduce heterogene-
ity, generalizability is impacted. Our study of population-
ascertained suicide deaths allows for the potential of more
generalizable results.
Second, we analyzed two independent suicide death cohorts

(WGS and genotyping array) that have different clinical character-
istics resulting from selection criteria [72]. The WGS cohort was
prioritized for suicide deaths with significant extended familial
risk, a factor associated with significantly younger age at death,
a higher percentage of female suicide deaths, and more
co-occurring clinical diagnoses [72]. As shown at the Table 1,
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although the most prevalent co-occurring clinical phenotype of
the suicide deaths in both cohorts was pain, a larger portion of the
WGS cohort had bipolar disorder (42.3% vs. 14.1% in the array
cohort) and suicidal ideation (29.8% vs. 18.8% in the array cohort).
Our design included the confirmation of allele frequencies across
these cohorts, requiring robust consistency in the face of known
differences in phenotypic and genetic risk loading. Of note, the
increased WGS extended familial risk has been shown to be
associated with increased genetic liability [72]. Thus, the focus on
WGS analysis in our study may have advantages for the
investigation of the selected eQTL variants.
Third, our study had access to WGS data, with confirmation of

allelic differences observed in genome-wide array data. Although
the array cohort included more suicide deaths than the WGS
cohort, WGS data covered the entire genome for genetic
variations. In addition, we prioritized brain eQTLs in regulatory
regions unlikely to be covered in array data. Indeed, previous
studies have reported that the WGS genotype calling results in
higher overall precision for genetic variant analysis [73].
Finally, we obtained comprehensive and robust brain eQTLs by

integrating multi-layer data from different resources. In particular,
Hi-C data can explain how GWAS SNPs within enhancer regions
could be related to their target genes, even when these genes are
far from the SNPs. Considering the fact that most GWAS signals
are in non-coding regions and SNPs within enhancer regions
could act as eQTLs affecting their distal target genes, it is crucial to
annotate and analyze eQTLs in enhancer regions by linking to
their target genes. Our integrative approach of multi-layer of data
enabled us to gain a comprehensive and robust resource for brain
eQTLs in regulatory regions that could affect gene expression.
Some general limitations should be noted in here. First, while we

employed several independent datasets, our cohorts do not have
RNA-seq data, requiring reliance on other datasets with a larger
sample size to study suicide risk in the context of gene expression
regulation. In addition, the Korean mental health RNA-seq data was
obtained from whole-blood samples from the Korean population
which is not matched for ancestry with our sample. However, since
other psychiatric disorders show associations with suicide risk
molecular mechanisms, there is considerable appeal in studying
the datasets to potentially find evidence of molecular mechanisms
of genes identified by our gene-based analysis involved in suicide
risk via the expression regulation of these related conditions.
Second, in our main genomic analysis of WGS suicide deaths and
general population controls, a relatively small number of local
ancestry-matched control samples were analyzed compared to
suicide deaths. Third, while analyses were restricted to suicide
deaths and controls of European ancestry and analyses included
residual ancestry principal components, residual effects of popula-
tion stratification are possible. In particular, detailed demographic
and clinical information was not available for either of the control
datasets, limiting our ability to adjust for possible important
covariates and preventing detailed analyses of diagnostic informa-
tion. For gnomAD in particular, only aggregated allele frequency
data are available. Finally, our results cannot address genetic risks
in populations with non-European ancestry diversity.
In conclusion, pending replication, our integrative analyses

present novel risk variants and genes associated with suicide
death and their putative roles, showing convergent lines of
evidence of risk for suicide death from comprehensive multi-layer
of data in diverse independent resources. Our robust results may
provide useful resources for future genetic discoveries, with the
hope for eventual development of therapeutic targets and
effective personalized preventative strategies.
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