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A B S T R A C T   

Growing evidence has shown that applying machine learning models to large clinical data sources may exceed 
clinician performance in suicide risk stratification. However, many existing prediction models either suffer from 
“temporal bias” (a bias that stems from using case-control sampling) or require training on all available patient 
visit data. Here, we adopt a “landmark model” framework that aligns with clinical practice for prediction of 
suicide-related behaviors (SRBs) using a large electronic health record database. Using the landmark approach, 
we developed models for SRB prediction (regularized Cox regression and random survival forest) that establish a 
time-point (e.g., clinical visit) from which predictions are made over user-specified prediction windows using 
historical information up to that point. We applied this approach to cohorts from three clinical settings: general 
outpatient, psychiatric emergency department, and psychiatric inpatients, for varying prediction windows and 
lengths of historical data. Models achieved high discriminative performance (area under the Receiver Operating 
Characteristic curve 0.74–0.93 for the Cox model) across different prediction windows and settings, even with 
relatively short periods of historical data. In short, we developed accurate, dynamic SRB risk prediction models 
with the landmark approach that reduce bias and enhance the reliability and portability of suicide risk prediction 
models.   

1. Introduction 

Suicide rates have increased by more than 30% over the past two 
decades (National Center for Health Statistics, 2018) and death by sui
cide is the second leading cause of death among 10–34 year-olds (Na
tional Center for Health Statistics, 2018). Most individuals who attempt 

or die by suicide are seen by a healthcare provider in the preceding 
month (Ahmedani et al., 2014), making healthcare settings a key venue 
for identifying and intervening to prevent suicide-related behavior 
(SRB). Unfortunately, studies have shown that clinician performance in 
predicting suicide risk is little better than chance (Nock et al., 2022). 

Recently, however, a growing number of studies have demonstrated 
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that applying statistical and machine learning models to the vast clinical 
data sources found in health system records can enable risk stratification 
that appears to exceed clinician performance (Barak-Corren et al., 2017, 
2020; Chen et al., 2020; Cho et al., 2020; Fisher et al., 2022; Karmakar 
et al., 2016; Levis et al., 2020, 2022; Machado et al., 2022; Malone et al., 
2021; Nock et al., 2022; Nordin et al., 2021; Obeid et al., 2020; Rossom 
et al., 2021; Simon et al., 2018, 2019; Su et al., 2020; Tsui et al., 2021; 
van Mens et al., 2020; Walsh et al., 2017, 2018; Wei et al., 2021; Xu 
et al., 2022; Zheng et al., 2020). We have recently shown that imple
mentation of these models can be cost-effective in reducing SRBs when 
paired with evidence-based interventions (Ross et al., 2021). However, 
existing prediction models have had key limitations. Many models re
ported to date (Barak-Corren et al., 2017; Cohen et al., 2020; Levis et al., 
2020; Nordin et al., 2021; Obeid et al., 2020; Tsui et al., 2021; van Mens 
et al., 2020; Walsh et al., 2018; Xu et al., 2022) have been trained using a 
case-control approach in which predictors are selected and weighted 
according to their differential frequency between individuals who 
engaged in SRBs (cases) and those who did not (controls). As such, the 
trajectory of predictive features for cases are collected up to the point of 
the SRB, while those sampled for controls occur throughout the period of 
observation available for these individuals. This leads to a fundamental 
mismatch in the distribution of data between the inputs for model 
development, and what clinicians see during actual practice (Yuan et al., 
2021). This “temporal bias” (Yuan et al., 2021) makes case-control 
model training quite different from the real-world scenario in which a 
clinician would utilize the model for prospective prediction. In practice, 
a clinician might wish to know whether a given individual is likely to 
attempt suicide within a specific window of time (e.g. the next month). 
However, the clinician would not have access to the (future) case vs. 
control status of a given individual – the outcome on which the model 
was trained. As Yuan and colleagues have shown (Yuan et al., 2021), this 
bias may result in a spurious inflation of effect sizes and render the 
model unsuitable for prospective prediction. 

Prior models that adopt a visit-based training scheme (i.e., using 
healthcare visits, instead of patients, as units of instances for model 
development) (Chen et al., 2020; Cho et al., 2020; Karmakar et al., 2016; 
Simon et al., 2018; Zheng et al., 2020) are typically not affected by 
temporal bias induced by case-control sampling because they are based 
on prospective designs and were trained irrespective of future case 
status. However, previous modeling schemes have either been (1) 
trained using all available visits (Chen et al., 2020; Simon et al., 2018), 
which potentially biased towards patients with more healthcare utili
zations; or (2) limited to specific time windows or settings (Cho et al., 
2020; Karmakar et al., 2016; Zheng et al., 2020) 

A major goal of developing and validating suicide prediction algo
rithms is to enable the development of clinical decision support tools 
that could be deployed at the point-of-care with scalability, flexibility, 
and transportability. However, as noted above, most attempts to 
construct such algorithms are either susceptible to temporal bias or bias 
towards patients with higher healthcare utilization that could compro
mise their performance, or have computational requirements that may 
limit their use in resource-constrained settings. To address these prob
lems, we apply a systematic approach to prediction based on a “land
mark model” framework (Parast and Cai, 2013; Parast et al., 2012; Van 
Houwelingen, 2007) which ameliorates the aforementioned issues 
through proper sampling. The main advantage of this approach is that 
by design, models can be flexibly trained in a manner that mirrors the 
clinical situation that practitioners actually face (in which future out
comes are not known); this avoids biases arising from distributional 
misalignments, promoting model interpretation and fairness. In essence, 
landmark modeling is based on defining a time point of interest (the 
“landmark time” – which can be one or more points of time of any type 
whenever data allows – e.g., at a certain type of clinical visit, or upon 
receiving a certain kind of diagnosis), from which prospective prediction 
is made without pre-specifying subsequent case or control status. Data 
are then sampled for all patients prior to the landmark time(s) and 

predictions are made for pre-defined prediction windows (e.g. the next 
month). This ensures that the distributions of patient training data (1) 
are not systematically different for those who later do or do not engage 
in SRBs; and (2) can be aligned with the particular application settings of 
interest. This approach can be used with whatever statistical or machine 
learning model architecture desired. 

Here, we apply landmark modeling to data from longitudinal elec
tronic health record (EHR) data from a large healthcare system (Mass 
General Brigham (MGB)) and train suicide risk prediction models using 
two approaches: one sparse linear model (regularized Cox regression 
(Wu, 2012)) and one model that accommodates complex interactions 
(random survival forest (Ishwaran et al., 2008)). 

2. Methods 

2.1. Study populations and cohort definition 

The data for the study were extracted from the MGB Research Patient 
Data Registry (RPDR) (Nalichowski et al., 2006). The RPDR is a 
centralized data registry that gathers clinical information from the MGB 
EHR. The RPDR database includes more than 7 million patients with 
over 3 billion records seen across more than 8 hospitals, including two 
major teaching hospitals: Massachusetts General Hospital and Brigham 
and Women’s Hospital. We defined three patient cohorts of interest 
within the RDPR by clinical settings: (1) a “general outpatient cohort”, 
which includes all patients who had at least 3 visits and a minimum of 90 
days of medical record, and were aged between 15 and 85 with at least 
one outpatient visit during the period of Jan 1, 2016 and Dec. 31, 2018 
(“the study time frame”). The starting date was chosen to reflect the 
completion of conversion from ICD-9 to ICD-10 to reduce heterogeneity 
in feature documentation; (2) a “psychiatric ED cohort”, applying the 
same age and data requirements as the general outpatient cohort, but 
requiring at least one emergency department visit (instead of an 
outpatient visit) within the study time frame, during which there was 
psychiatric evaluation/consultation; and (3) a “psychiatric inpatient 
cohort”, applying the same age and data requirements as the previous 
two cohorts, but instead requiring at least one psychiatric inpatient 
admission during the study time frame. For each of these cohorts, we 
randomly sampled one visit per patient (i.e., any outpatient visit for the 
general outpatient cohort; a psychiatric-ED visit for the psychiatric ED 
cohort, and a psychiatric inpatient admission for the psychiatric inpa
tient cohort) during the study timeframe and used it as the “landmark 
visit” (i.e., the visit from which a prediction is made). For psychiatric-ED 
and inpatient landmark visits, where encounters may span more than 
one day, the last day of the visit was the time when prediction was 
performed. 

2.2. Suicide-related behavior definition 

SRB was defined using a set of International Classification of Disease 
10 Clinical Modification (ICD-10-CM (World Health Organization, 
1993)) codes as previously reported (Barak-Corren et al., 2020, 2017). 
As previously described (Barak-Corren et al., 2017), these codes were 
shown to be valid for capturing intentional self-harm by extensive chart 
review by expert clinicians, with a positive predictive value (PPV) 
greater than 70%. To further increase the PPV of the SRB ICD codes for 
outcome measurement, we limited the codes to those which are recor
ded at either an emergency department (ED) or a psychiatric inpatient 
encounter for outcome events. As such, non-ED or psychiatric inpatient 
SRB ICD codes were included as prediction features, but not as outcome 
SRB events. 

2.3. Feature extraction and outcome definition 

The features and outcomes were defined in the same way for all the 
three cohorts defined above (i.e., general outpatient, ED, and psychiatric 
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inpatient). Specifically, the survival outcome was defined as the time to 
the first SRB-related diagnostic code since the landmark visit. SRB codes 
at the first day after the landmark visit were not included to ensure SRB 
indeed occurred after the landmark visit, as ICD code entries can be 
delayed. In addition, SRB codes that occur within five days after the last 
SRB code prior to or on the last day of the landmark visit are not 
included to minimize the probability that the SRB code represents an 
already documented, rather than a new SRB event. 

The EHR prediction features were derived using historical EHR data 
(ICD codes) prior to or at the landmark visit, as follows. We defined 
several “look back” periods (0.5, 1, 2, 4, 6, 8 years and all historical 
data). representing the time frame during which historical features are 
included. Feature sets were constructed separately for each look back 
period. For example, EHR features included in the two-year look back 
period were only those documented on or prior to the landmark visit for 
all patients having more than two years’ data. In this case, we used all 
EHR data on or prior to the landmark visit for patients having less than 
two years’ data. We then converted historical ICD codes to PheWAS 
codes (“phecodes”), derived from the PheWAS catalog (https://phewasc 
atalog.org/phecodes) that groups related ICD codes into clinically 
relevant groups (Denny et al., 2013). Next, the total count of each 
phecode during the look back period was extracted for each patient 
(1799 phecodes in total). Duplicated phecodes on the same day are only 
counted once to avoid “double counting”. We also removed rare phec
odes (occurring in fewer than 10 patients in each of the study cohorts). 
To take into account the different lengths of history available in our 
database, we then normalized the total phecode count to the length of 
observation time, followed by log-transformation. Thus, for the two-year 
look back period, phecode_normalized = log(phecode_count + 1) – log 
(T_obs), where T_obs is equal to two for patients having more than two 
years’ data and is equal to the number of years between the first visit 
(defined by the first ICD code ever recorded in the database) and the 
landmark visit for patients having less than two years’ data. We also 
include the number of prior SRBs (as defined above) as a feature (after 
normalization and log transformation). 

In addition to features based on phecodes, we derived a feature 
(“HU_normalized”) indexing overall healthcare utilization by extracting 
the total count of unique visits in the look back period and then 
normalizing the count to the length of observation time for the data, 
followed by log-transformation. Lastly, we included demographics fea
tures (i.e., gender, race, age, and public payer status). Prior to model 
training, each feature is standardized to have a mean of zero and a 
standard deviation of one. 

2.4. Model building and evaluation 

We evaluated two models for risk prediction: regularized Cox 
regression (i.e., regularized Cox models with linear effects for survival 
outcomes) and random survival forest (RF, the survival version of a non- 
linear tree-based model). We constructed the prediction models for each 
look back period and each setting separately. To improve the compu
tational efficiency for the general outpatient cohort, where there are a 
large number of visits with no subsequent SRB events in the prediction 
windows (“non-event visits,”), we trained models using a fraction (1/20) 
of randomly sampled non-event visits, and used all visits followed by at 
least one SRB event. The effect of down-sampling was then reverted to 
the full EHR data size by up-weighting non-event visits during model 
training by a factor of 20. We used the R packages glmnet (Simon et al., 
2011) and randomForestSRC (Ishwaran et al., 2008) to fit the regularized 
Cox models and random survival forests, respectively. 

For the regularized Cox model, we used nested cross-validation (with 
K=5 folds for both inner and outer splits) for hyperparameter tuning (via 
inner splits) and evaluation the predictive performance of the models 
(via outer splits). The models were trained utilizing both L1 and L2 
penalties with a fixed numerical ratio of 9:1 (i.e., alpha = 0.9) and tuned 
for the Lambda value (i.e., the overall strength of regularization). For the 

random forest models, we used the rfsrc() function from random
ForestSRC package for model training, where ntree = 1000 (i.e., Number 
of trees grown) and nsplit = 50 (i.e., the number of random splits to 
consider for each candidate splitting variable), and utilized 5-fold cross- 
validation to evaluate the predictive performance of the models. These 
procedures were repeated for each look back period and for each clinical 
setting. We report prediction metrics (i.e. area under the receiver 
operator characteristic curve (AUROC), as well as positive predictive 
value (PPV) and sensitivity with specificity set to 0.95 for model eval
uation (Uno et al., 2007) using three prediction windows (t = 6, 12, and 
18 months). The minimum length of prediction windows (6 months) was 
chosen to balance the need for sufficient outcome events with the desire 
to capture relatively short-term risk. 

2.5. Sensitivity analysis: sampling all versus one random visit per patient 

To empirically compare how our sampling scheme (i.e., randomly 
sampling one visit per patient) performs compared to the approach of 
including all visits, we performed sensitivity analyses by training the 
regularized Cox models with all patients visits available for each of the 
three cohorts. Models were fit to the all-visit data in the same manner as 
in the main analysis, except that to accommodate the larger number of 
visits, the down-sampling of the general outpatient cohort was done by 
first down-sampling the number of patients with no SRB events by a 
factor of 100 (instead of 20), which was then adjusted later via 
reweighting during model training. To maintain fairness to patients with 
less frequent visits, we also perform evaluation by restricting to sam
pling one visit per patient, i.e., during cross-validation, one visit was 
randomly sampled from patients who were not included in the inner 
splits. 

3. Results 

A total of 1,210,225, 13,098, and 7825 patients were included in the 
general outpatient, psychiatric-ED, and psychiatric inpatient cohorts, 
respectively. Table 1 summarizes the demographic composition of the 
three cohorts. The mean (SD) age for the three cohorts were 50.5 (18.0), 
40.3 (17.4), and 43.4 (17.5). Overall, all cohorts comprised slightly 
more females compared to males (e.g. 60% females in the general 
cohort). Single marital status and public insurance were the majority 
status for both the psychiatric-ED (Single, 68%; public payer, 75%) and 
psychiatric inpatient cohorts (single, 60%; public payer, 68%), but not 
for the general cohort (single, 33%; public payer, 45%). Prevalence of 
suicide attempts was lowest in the general cohort (0.02%, 0.04% and 
0.06% for 6 months, 12 months, and 18 months prediction windows) 
and highest in the psychiatric-ED cohort (1.6%, 2.3% and 3% for 6 
months, 12 months, and 18 months prediction windows). 

In general, both models showed good to excellent discrimination 
metrics (AUROC) for each cohort and across different prediction win
dows, though AUROC was generally higher for the Cox models 
compared to RF models. For example, for the general cohort, the Cox 
model had AUROC >=0.9 across all prediction windows Table 2, while 
the survival RF model had AUROC >= 0.84 across prediction windows. 
Henceforth we adopted the regularized Cox model as the main model 
(the metrics for the RF model are reported in the supplements). Per
formance metrics for the regularized Cox model are shown in Fig. 1 and 
for the RF model in supplementary Fig. 1. Table 2 provides exact model 
performance metrics for look back periods up to two years, stratified by 
each cohort for the regularized Cox model. Metrics for all look back 
periods for the regularized Cox model are provided in Supplementary 
Tables 1–3, and corresponding results for the RF model are provided in 
Supplementary Tables 4-6 Supple indows. At 95% specificity, the 
highest PPV (0.19) was observed in the psychiatric inpatient cohort 
using an 18 months prediction window. Although the outpatient setting 
has the lowest PPV, those classified as high risk are 12 times more likely 
to have SRB compared to the general population when predicted using 
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Table 1 
Demographic composition of the three patient sets analyzed in this study.  

Setting General Outpatient  Psychiatric-ED  Psychiatric Inpatients   
Mean SD Mean SD Mean SD 

Age 50.45 17.95 40.35 17.37 43.35 17.46  
N % N % N % 

Gender 
Female 721,976 59.66 6328 48.31 4234 54.11 
Male 488,224 40.34 6769 51.68 3591 45.89 
Unknown 25 0.00 1 0.01 0 0.00 
Race 
Asian 55,703 4.60 403 3.08 229 2.93 
Black 72,215 5.97 1360 10.38 672 8.59 
White 953,723 78.81 10,103 77.13 6076 77.65 
Other 86,611 7.16 825 6.30 565 7.22 
Unknown 41,973 3.47 407 3.11 283 3.62 
Ethnicity 
Hispanic 69,475 5.74 775 5.92 404 5.16 
Non-Hispanic 1,140,750 94.26 12,323 94.08 7421 94.84 
Marital status 
Single 398,131 32.90 8958 68.39 4671 59.69 
Married 643,806 53.20 2090 15.96 1800 23.00 
Partner 7043 0.58 86 0.66 42 0.54 
Divorced 68,824 5.69 1122 8.57 756 9.66 
Separated 11,356 0.94 287 2.19 145 1.85 
Widowed 42,172 3.48 370 2.82 223 2.85 
Other/Unknown 38,893 3.21 185 1.41 188 2.40 
Veteran status 
Yes 56,720 4.69 543 4.15 274 3.50 
No 986,126 81.48 11,542 88.12 6807 86.99 
Unknown 167,379 13.83 1013 7.73 744 9.51 
Public payer 
Yes 549,438 45.40 9861 75.29 5367 68.59 
No 660,787 54.60 3237 24.71 2458 31.41 
Total N 1,210,225  13,098  7825   

Table 2 
Regularized Cox model performance metrics for the three clinical settings. (a) general outpatient; (b) psychiatric ED; (c) psychiatric inpatient. Prevalence is the 
proportion of visits followed by at least one SRB event within the specified prediction window and cohort. Thresholded metrics are reported at 95% specificity.  

(a) Model metrics for general outpatient cohort 
Look back 
period (yrs) 

Prediction 
window 

AUROC Sensitivity PPV Prevalence Relative 
Risk 

0.5 0.5 0.917 0.632 0.003 0.02% 12.612 
1 0.5 0.923 0.648 0.003 0.02% 12.923 
2 0.5 0.929 0.700 0.003 0.02% 13.954 
0.5 1 0.914 0.624 0.005 0.04% 12.415 
1 1 0.918 0.624 0.005 0.04% 12.414 
2 1 0.925 0.669 0.005 0.04% 13.307 
0.5 1.5 0.904 0.584 0.007 0.06% 11.597 
1 1.5 0.907 0.577 0.007 0.06% 11.475 
2 1.5 0.916 0.621 0.007 0.06% 12.325 
(b) Model metrics for psychiatric ED cohort 
Look back 

period (yrs) 
Prediction 
window 

AUROC Sensitivity PPV Prevalence Relative 
Risk 

0.5 0.5 0.742 0.278 0.084 1.62% 5.172 
1 0.5 0.744 0.290 0.087 1.62% 5.381 
2 0.5 0.739 0.302 0.091 1.62% 5.583 
0.5 1 0.755 0.268 0.113 2.33% 4.858 
1 1 0.761 0.282 0.119 2.33% 5.097 
2 1 0.757 0.293 0.123 2.33% 5.271 
0.5 1.5 0.769 0.309 0.160 3.00% 5.350 
1 1.5 0.773 0.328 0.168 3.00% 5.630 
2 1.5 0.769 0.324 0.167 3.00% 5.574 
(c) Model metrics for psychiatric inpatient cohort 
Look back 

period (yrs) 
Prediction 
window 

AUROC Sensitivity PPV Prevalence Relative 
Risk 

0.5 0.5 0.788 0.332 0.092 1.51% 6.110 
1 0.5 0.782 0.332 0.093 1.51% 6.117 
2 0.5 0.784 0.362 0.100 1.51% 6.612 
0.5 1 0.796 0.386 0.148 2.20% 6.721 
1 1 0.793 0.394 0.150 2.20% 6.834 
2 1 0.795 0.394 0.150 2.20% 6.834 
0.5 1.5 0.792 0.357 0.171 2.80% 6.102 
1 1.5 0.790 0.362 0.173 2.80% 6.169 
2 1.5 0.793 0.393 0.185 2.80% 6.602  
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Fig. 1. Model metrics plots for regularized Cox regres
sion. (a) AUROC; (b) PPV; (c) sensitivity; (d) relative risk 
(PPV/baseline prevalence of each cohort). Threshold- 
dependent metrics are reported at 95% specificity. For 
each model metric, each line plot (in rectangle) repre
sents model metrics for specific prediction windows (6, 
12, and 18 months, left to right). For each line plot, 
different lengths of look back period (x-axis) is plotted 
against the metric of interest (y-axis). Colors denote the 
clinical settings (red: general outpatient; green: psychi
atric ED; blue: psychiatric inpatient). Thresholded met
rics are plotted at 95% specificity. (a)AUROC; (b)PPV; 
(c) Sensitivity (d) Relative Risk (RR).   
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look back periods of 2 years or more look back window. As a general 
trend, model metrics were largely invariant to the length of look back 
period; using only recent (i.e., 6 months) of historical data provided 
comparable performance to using all data prior to the sampled visits. 
Fig. 2 plots the top 20 features by absolute value of beta coefficients for 
the regularized Cox model under each clinical setting with 1-year look 
back period (top features for other look back periods were similar within 
clinical setting). Given that the features are standardized, the beta co
efficients are directly comparable. 

Supplementary Tables 7–9 show model performance metrics for the 
regularized Cox models using all visits available. Despite utilizing more 
information, models trained using all visits performed on par with (e.g., 
AUROC 0.89–0.91 across all lookback periods for 6 months prediction 
window the general outpatient cohort) or slightly worse (e.g., AUROC 
0.67–0.77 across all lookback periods for 6 months prediction window 
for the psychiatric ED and inpatient cohorts) than models trained with 
one visit per patient based on point estimates of the model metrics. 

4. Discussion 

We used large scale, structured EHR data to develop SRB prediction 
models using a landmark modeling approach that mirrors real-world 
scenarios in which a clinician would want to assess prospective risk of 
SRB. Both regularized Cox regression and RF survival models achieved 
high discrimination performance across all patient cohort/prediction 
window combinations. Our approach avoids temporal bias that arises 
from case-control sampling and provides an unbiased method for 
computing estimated risks across multiple clinical settings that is at the 
same time computationally efficient, which may be particularly bene
ficial in settings where computational resources are limited. 

In recent years, the alarming frequency of suicide attempts and 
suicide-related deaths have underscored the urgent need to improve 
methods of risk stratification and prevention. The fact that most in
dividuals who attempt or die by suicide are seen by healthcare providers 
in the preceding months provides a crucial opportunity for risk mitiga
tion in clinical settings. In 2021, the US Surgeon General issued a “Call to 

Action to Implement the National Strategy for Suicide Prevention” (U.S. 
Department of Health and Human Services, 2021) that noted the value 
of EHRs for screening and assessment for suicide risk. There has recently 
been a proliferation of efforts to develop statistical and machine learning 
models that leverage the scale and breadth of EHR data for suicide risk 
prediction (Barak-Corren et al., 2017; Chen et al., 2020; Cho et al., 2020; 
Cohen et al., 2020; Karmakar et al., 2016; Levis et al., 2020; Nock et al., 
2022; Nordin et al., 2021; Obeid et al., 2020; Simon et al., 2018; Su 
et al., 2020; Tsui et al., 2021; van Mens et al., 2020; Walsh et al., 2018; 
Xu et al., 2022; Zheng et al., 2020). Though such models have been 
shown to outperform risk assessment by clinicians (Nock et al., 2022), 
they have often had limitations including susceptibility to temporal bias, 
biases towards patients with more frequent visits, and, in some cases, 
intensive computational burden. In this context, the work described here 
includes several notable findings. 

First, we demonstrate that models using a prospective landmark 
approach and structured EHR data showed good to excellent discrimi
nation (AUROC = 0.74–0.93) across patient cohorts seen in general 
outpatient, psychiatric ED, and psychiatric inpatient care settings. In 
addition, by randomly sampling one visit per patient for each cohort, our 
approach to model training provides fairness to each patient regardless 
of their number of hospital visits, as well as greater computational ef
ficiency compared to approaches that utilize all visits (Chen et al., 2020; 
Simon et al., 2018). However, performance metrics varied by clinical 
setting, likely due to differing base rates of suicide-related behavior. 
Models applied to the general outpatient cohort achieved the highest 
sensitivity (0.58–0.70 at 95% specificity) and discrimination, indexed 
by AUROC (0.90–0.93). At 95% specificity, patients classified as 
high-risk had a 12- to 13-fold increase risk of suicide attempt over a 
6-month window. On the other hand, PPVs were lowest among the co
horts tested, ranging from 0.3 to 0.7%. For predictions from general 
outpatient settings, presumably reflecting the low base prevalence (e.g., 
0.02% over 6 months). In contrast, for patients in the psychiatric ED 
cohort (where the base prevalence was 1.62% over 6 months), sensi
tivity was lowest (0.33–0.39) but PPVs were highest among the three 
care settings (8–17%). Results for the psychiatric inpatient cohort were 

Fig. 2. Top 20 important features for regularized Cox regression, ranked by absolute value of beta coefficient of the regression model. Look back period = 1 year is 
provided here for illustrative purpose. Results for other look back periods are similar within each clinical setting. Number in the parenthesis represents the phecode 
for phecode-based features. Beta coefficients of the phecode features were calculated with per log number increase of normalized code counts. Note that all features 
are standardized to have a mean of 0 and standard deviation of 1, therefore the betas are directly comparable. The feature “Count of previous SRBs (by study 
definition)” refers to ICD codes that were included in the case definition; these codes were removed from other phecodes during feature engineering to avoid double 
counting. Public payer: whether the source of healthcare insurance was provided by a public source (e.g., Medicaid, Medicare). 
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intermediate between those seen for general outpatient and psychiatric 
ED cohorts. These differences in model performance are relevant for 
evaluating the net benefit of deploying such models for suicide risk 
screening in different contexts. That is, their utility will depend on 
whether the goal is to minimize false positives (which would favor use in 
the subset of patients seen in psychiatric EDs) or false negatives (in 
which case implementation in outpatient care settings could be justi
fied). For the general outpatient cohort, false positives could be reduced 
by setting highly stringent thresholds for defining high-risk patients. 
Alternatively, improved performance might be achieved by incorpo
rating additional data. However, in a set of analyzes during the earlier 
stages of this study (results not reported), we found that adding infor
mation such as medication, procedures, and features extracted via nat
ural language processing did not substantially improve model 
performance. Recent work by our group (Nock et al., 2022) and others 
(Wilimitis et al., 2022) suggests that model performance can be 
enhanced by combining historical EHR data with in-person suicide risk 
survey data. Nevertheless, the model performance we observed in this 
study exceed thresholds we have previously shown to be cost-effective 
when paired with evidence-based prevention strategies (Ross et al., 
2021). 

Overall, our results compare favorably to those reported for prior 
EHR-based suicide risk models developed for prospective prediction 
(Chen et al., 2020; Cho et al., 2020; Karmakar et al., 2016; Simon et al., 
2018; Walsh et al., 2021; Zheng et al., 2020). For example, Simon et al. 
(Simon et al., 2018) reported a PPV of approximately 2.5% over a 
90-day window following a primary care visit with a mental health 
diagnosis and 5% following a mental health specialty visit, The AUROCs 
for these models (0.85) were comparable to those seen in the current 
study. Walsh and colleagues (Walsh et al., 2021) reported real-time 
predictions using a random forest model based on a 5-year look back 
period and incorporating EHR data and a zip code-based Area Depri
vation Index. As in our study, discrimination metrics varied by clinical 
setting: health system-wide (AUROC = 0.84), ED (AUROC = 0.78), 
inpatient psychiatry (AUROC = 0.63). Model PPV for suicide attempt for 
the highest risk quantile was 0.4%. 

Also of note, we find that model performance for a given prediction 
window is similar across look back periods from 2 years to as short as 6 
months. This suggests that such models can be useful even when 
extensive historical data are not available for most patients. Similarly, 
for a given look back period, results were similar for prediction windows 
of 6 months to 18 months. 

In the current study, model evaluation is reported based on one 
randomly sampled landmark visit per patient in the hold-out set during 
cross-validation. Another choice would be to treat all visits as landmark 
visits (i.e. visits from which predictions are made) in the model evalu
ation. However, our approach of selecting a set number of randomly 
sampled visits per patient provides equal sampling probability to each 
patient regardless of the frequency of their clinical visits. This avoids 
over-representation of patients with greater healthcare utilization. To 
empirically compare how our sampling scheme (i.e., randomly sampling 
one visit per patient) performs compared to the approach of including all 
visits, we performed sensitivity analyses by training the regularized Cox 
model using all visits available for each patient. Results show that 
models trained with all visits available did not perform better than their 
one-visit-per-patient counterparts. Theoretically, while models might 
benefit from the additional information in the extra visits, the repeated 
visits might not be as informative as expected, because the look-back 
windows (especially the longer ones) would already include much of 
the longitudinal patient history, even if only one visit was sampled per 
patient. Notably, in our study, using longer look-back windows did not 
improve performance meaningfully. 

As mentioned, one additional advantage of the landmark approach is 
that by providing flexibility in sampling, the models can be more 
lightweight and efficient during training. In settings where more 
frequent updates are desired, training efficiency is valuable because 

training and tuning time for most machine learning models can grow as 
data size, features, and hyperparameters tuned increase (Efron et al., 
2004; Keles et al., 2022; Sani et al., 2018), as do requirements for system 
memory. These demands can become problematic in circumstances 
involving big data and complex models, especially for resource-limited 
settings. 

Our results should be interpreted in light of several limitations. First, 
because the models are based on EHR data, predictors and outcomes 
may not have been fully ascertained to the extent that patients receive 
care outside the health system. Second, the minimum prediction win
dow evaluated here was 6 months. Further work will evaluate prediction 
windows (e.g. 30 days) that might be of clinical importance. Lastly, our 
models were trained and validated in a single healthcare system and 
performance in other systems may vary depending on variation in pa
tient characteristics and documentation practices. Nevertheless, we note 
that the MGB system comprises more than 8 hospitals with heteroge
neous catchment areas and clinical practices, supporting some degree of 
generalizability. In addition, the landmark framework used here is 
computationally efficient and can be readily used for local training and 
validation in other systems. 

Integrating these models in day-to-day clinical practice imposes 
potential challenges that could be addressed in future work. These can 
include, and are not limited to: (1) balancing the cost of false positives/ 
negatives; (2) issues around provider liability; (3) pairing predictions 
with evidence-based preventions; (4) education of clinicians and pa
tients to ensure accurate interpretation of model predictions (e.g. to 
emphasize that risk scores are meant to inform, rather than replace, 
clinician judgment); and (5) appropriate design and implementation of 
clinical decision support systems (e.g. minimizing “alert fatigue”). 

In conclusion, we introduce a prospective landmark modeling 
approach using large-scale, structured EHR data that is accurate, re
duces bias, and is computationally efficient for predicting suicide at
tempts in real-world healthcare settings. Given the urgency of improving 
risk stratification and prevention of suicide-related behavior, our 
approach offers a valuable opportunity for enhancing efforts to inform 
clinical decision making. 
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