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Complex modeling with detailed temporal predictors does not
improve health records-based suicide risk prediction
Susan M. Shortreed 1,2✉, Rod L. Walker1, Eric Johnson1, Robert Wellman 1, Maricela Cruz1,2, Rebecca Ziebell1, R. Yates Coley1,2,
Zimri S. Yaseen 3, Sai Dharmarajan3, Robert B. Penfold 1, Brian K. Ahmedani4, Rebecca C. Rossom5, Arne Beck6,
Jennifer M. Boggs6 and Greg E. Simon1

Suicide risk prediction models can identify individuals for targeted intervention. Discussions of transparency, explainability, and
transportability in machine learning presume complex prediction models with many variables outperform simpler models. We
compared random forest, artificial neural network, and ensemble models with 1500 temporally defined predictors to logistic
regression models. Data from 25,800,888 mental health visits made by 3,081,420 individuals in 7 health systems were used to train
and evaluate suicidal behavior prediction models. Model performance was compared across several measures. All models
performed well (area under the receiver operating curve [AUC]: 0.794–0.858). Ensemble models performed best, but improvements
over a regression model with 100 predictors were minimal (AUC improvements: 0.006–0.020). Results are consistent across
performance metrics and subgroups defined by race, ethnicity, and sex. Our results suggest simpler parametric models, which are
easier to implement as part of routine clinical practice, perform comparably to more complex machine learning methods.

npj Digital Medicine            (2023) 6:47 ; https://doi.org/10.1038/s41746-023-00772-4

INTRODUCTION
Over 45,000 people died by suicide in the United States and an
estimated 1.2 million people attempted suicide in 20201. Reducing
fatal and nonfatal self-harm is a public health priority around the
globe. For clinicians, identifying patients at risk using traditional
clinical risk factors is hardly better than chance2, and self-report
questionnaires have only moderate predictive value3,4. For health
systems, delivery of effective prevention programs will require
accurate identification of risk at the population level5,6 For public
health scientists assessing beneficial or adverse effects of therapies
on suicidal behavior addressing confounding requires accurately
accounting for pre-existing risk7–9.
Several research groups have developed and validated machine

learning models to predict risk of suicide attempt and death using
health records data. These risk models attempt to predict risk of
suicidal behavior over follow-up periods ranging from 7 days to
one year, often achieving good overall performance with area
under receiving operating curves (AUCs)10,11 exceeding 0.8012–22.
These models have varied in their complexity, both in terms of

the number and types of predictors included and in the modeling
techniques used to estimate the models. Some final models had
10–20 predictors12, while others used over 200022. Some groups
estimated relatively simple models (e.g., penalized logistic
regression), while others used more complex strategies (e.g.,
artificial neural networks or ensemble approaches).
Recently, complex machine learning models have been

criticized as too opaque and not explainable to clinicians and
patients23. While “black box” algorithms are one form of
complexity, even relatively simple algorithms, such as logistic
regression, become complex as the number and type of
predictors considered increase. Many have commented on the
need for trust and transparency when integrating machine

learning risk prediction into clinical care24,25, and explainability
may be necessary if practicing clinicians are to trust model-
based alerts or recommendations26. Recent work, including
case studies reporting on the racial biases that can be
perpetuated through the implementation of machine learning
methods27, has highlighted the importance of examining
model performance across subgroups and provided a frame-
work for doing so28.
In addition to transparency, trust, and explainability, transport-

ability and technical ease of use can be practical barriers to
implementing risk models in clinical care. As the number of
predictors increases, so does the amount of information a health
system must routinely access to employ a risk model in clinical
care. More predictors also require more programming, and more
complex models demand greater computational resources to
update clinical risk scores. Discussion of complexity in clinical risk
modeling often presumes a trade-off between prediction accuracy
and transportability, explainability, and transparency20,24,29, but
this may not be accurate.
Reported comparisons of simpler versus more complex models

for prediction of suicidal behavior given a common set of
predictors do not consistently show that more complex (and less
transparent) methods improve accuracy. While some studies
found that more complex models had superior performance, the
gains were not always large16,18–22,30. For example, in a large study
of 500,000 visits among 125,000 patients, Chen and colleagues18

found that the best performing models were ensemble models
that included artificial neural networks and gradient boosting
models using 425 predictors; the AUC for the top-performing
ensemble model was 0.875, while the AUC for a logistic regression
model with a subset of 100 predictors was 0.872. Complex models
require more resources to estimate, validate, and implement, and
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these additional requirements must be weighed along with their
practical improvements over simpler models.
In this study, we compare a well-performing previously

developed logistic regression model predicting suicidal behavior
following an outpatient mental health visit15, which uses
relatively simple temporal predictors extracted from clinical
data, to newly developed models that used over 1400 predictors
including information about the timing, frequency, and rate of
diagnoses, prescription fills, utilization, and mental health
assessments in the 60 months prior to the visit. We examine if
these detailed temporal predictors improve performance over
the previously developed model when predictors were used in a
random forest, artificial neural network, or a logistic regression
(with lasso for variable selection). We evaluate if non-parametric
approaches (random forest and artificial neural networks), which
are able to model complex interactions and non-linear relation-
ships, using detailed temporal predictors further improve upon
logistic regression. Because detailed temporal predictors (e.g.,
recent versus distal previous suicide attempt) might offer the
most advantage when predicting risk in close temporal proximity
to the visit in question, we compare performance for models
predicting suicidal behavior in the 30 days and 90 days following
a visit. We compare performance using a variety of performance
metrics and investigate performance across subgroups defined
by race, ethnicity, and sex.

RESULTS
Study population
Our sample for estimating and validating suicide attempt (fatal
and nonfatal) risk prediction models contained 15,249,031 (59%)
mental health specialty visits made by 1,507,684 people and
another 10,551,857 general medical visits made by 2,592,332
(84%) people. The sample used for suicide death prediction
models contained 13,981,418 (59%) mental health specialty visits
made by 1,433,584 people and 9,714,817 (41%) general medical
visits made by 2,470,576 people.
Table 1 describes our sample, both training and validation

datasets, of mental health specialty visits and general medical
visits used to estimate and validate suicide attempt models;
Supplementary Table 1 describes the samples used for suicide
death prediction models. Mental health specialty and general
medical visit samples looked similar except for higher rates of
mental health conditions among mental health specialty visits,
including depression (73.1% mental health training versus 56.5%
general medical, Table 1, training data) and psychotic disorders
(7.9% mental health training versus 4.8% general medical, Table 1,
training data). The 30- and 90-day suicide attempt rate was 0.27%
and 0.65% for mental health specialty visits and 0.15% and 0.33%
for general medical visits. The 90-day suicide death rate was
0.023% for mental health specialty visits and 0.014% for general
medical visits. Proportions of visits followed by a suicide attempt
or death overall, across racial and ethnic subgroups, and by sex
are reported in Table 2.

Overall performance for suicide attempt models
The performance, estimated in the validation sample, of each
modeling strategy predicting suicide attempt in the 90 days
following an index visit in the mental health specialty and general
medical samples are presented in Table 3. (For information on
tuning parameter selection, see Supplementary Tables 3–8). The
best performing model for 90-day suicide attempts in the mental
health specialty sample was the ensemble model using all three
models and detailed temporal predictors (referred to as: full
ensemble model) with an AUC of 0.858 (95% confidence interval:
0.856, 0.860). However, the AUCs for all suicide attempt models in
this sample were very similar, including the original parsimonious

model with fewer, less rich temporal predictors (AUCs ranging
from 0.846 to 0.858). Using the 99th percentile as a cutoff yielded
a sensitivity of 0.182 (0.178, 0.186) and a PPV of 0.111 (0.109,
0.114) for the full ensemble model compared to a sensitivity of
0.160 (0.156, 0.164) and a PPV of 0.104 (0.102, 0.107) for the
original parsimonious model. The F-score showed similar patterns,
with the ensemble model having a value of 0.138 (0.135, 0.141),
and the original parsimonious model having a value of 0.126
(0.123, 0.130). Plots of receiver operating characteristic (ROC)
curves (Fig. 1) show very little variability among models. While
there is some variation across models in precision-recall curves
(Fig. 2) at lower recall rates (i.e., sensitivity), this portion of the
graph represents less than 1% of visits. As seen in the calibration
results in Table 4, all models are well-calibrated throughout the
risk score distribution, with two exceptions: the original parsimo-
nious model and logistic regression model with detailed temporal
predictors both over-estimate the probability of a suicide attempt
in the highest risk group. Performance of the 90-day suicide
attempt model for general medical visits was slightly lower across
all metrics, yet similar patterns as the mental health specialty visits
were observed; the full ensemble model had the best perfor-
mance (AUC: 0.847 [0.842, 0.851]), yet all models performed
similarly (AUCs ranging from 0.839 to 0.847, Table 3). Performance
of 30-day suicide attempt models was similar to 90-day models for
both samples (Table 5); while ensemble models using detailed
temporal predictors performed the best (mental health specialty
AUC 0.867 [0.864, 0.870]; general medical 0.848 [0.842, 0.854]), the
improvement over the original parsimonious model was small
(mental health specialty AUC 0.857 [0.853, 0.860]; general medical
0.842 [0.836, 0.849]).

Overall performance for suicide death models
Performance of prediction models estimating suicide death within
90 days of a mental health specialty visit was more variable than
suicide attempt models (Table 6, AUCs 0.794–0.837 for mental
health specialty and 0.794–0.836 for general medical). Larger
performance gains were observed for the 90-day suicide death full
ensemble model (mental health specialty AUC 0.837 [0.825, 0.849];
general medical 0.836 [0.816, 0.854]) over the original parsimo-
nious model (mental health specialty AUC 0.823 [0.808, 0.837];
general medical 0.816 [0.794, 0.837]) than were seen for the 90-day
suicide attempt model. Assessing sensitivity at the 99th percentile
in the mental health specialty sample showed that, while the
ensemble model made up of logistic regression and an artificial
neural network had a larger point estimate (0.139 [0.118, 0.161])
than the full ensemble model (0.136 [0.115, 0.157]), confidence
intervals overlapped to a large degree. The full ensemble model
was the top performing model in the general medical sample
across all performance measures.

Model performance across demographic subgroups
Variability in model performance across race, Hispanic ethnicity, and
sex was observed, but most confidence intervals overlapped, with
some confidence intervals being very wide (Figs. 3, 4, Supplemen-
tary Tables 8–12). Note, because the demographic subgroups we
explored are associated with suicidal behavior and benefits of risk
stratification are not present when examining performance within
subgroups, we expect AUCs within subgroups to be slightly lower
on average than in the full population.
Comparisons of model performance across race, ethnicity, and

sex followed the same pattern as the overall sample for all
outcomes and follow-up periods (30-day and 90-day suicide
attempt and 90-day suicide death). The full ensemble model with
detailed temporal predictors was usually among the top
performers, but the best performing models provided small
gains over the original parsimonious model. For example, in the
mental health specialty sample for 90-day suicide attempt
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Table 1. Cohort description of training and validation sample for mental health specialty visits and general medical visits used to estimate suicide
attempt (fatal and nonfatal) risk prediction model.

Mental health specialty visits General medical visits

Characteristic Training Validation Training Validation

N % N % N % N %

Visits 10,674,110 4,574,921 7,399,746 3,152,111

People 1,055,333 452,351 1,814,630 777,702

Suicide attempt within 90 days of visit 68,179 0.64 29,910 0.65 24,205 0.33 10,559 0.33

Female 6,809,585 63.8 2,917,535 63.8 4,658,689 63.0 1,981,603 62.9

Age group (year)

11–17 1,203,318 11.3 513,324 11.2 466,630 6.3 201,697 6.4

18–29 1,757,049 16.5 746,370 16.3 910,037 12.3 393,005 12.5

30–44 2,675,777 25.1 1,152,465 25.2 1,436,281 19.4 613,336 19.5

45–64 3,758,387 35.2 1,620,762 35.4 2,571,295 34.7 1,085,343 34.4

65 or older 1,279,579 12.0 542,000 11.8 2,015,503 27.2 858,730 27.2

Race and Ethnicitya

Asian 575,790 5.4 241,079 5.3 377,044 5.1 163,118 5.2

American Indian/Alaska Native 105,359 1.0 43,814 1.0 83,460 1.1 37,278 1.2

Black/African American 937,826 8.8 400,089 8.7 586,268 7.9 251,759 8.0

Native Hawaiian/Pacific Islander 112,581 1.1 48,880 1.1 66,571 0.9 29,064 0.9

White, non-Hispanic 6,130,341 57.4 2,630,268 57.5 4,521,388 61.1 1,918,078 60.9

Hispanic ethnicity 2,589,816 24.3 1,120,187 24.5 1,600,730 21.6 682,587 21.7

Not recorded (i.e., race & ethnicity unknown) 356,691 3.3 147,921 3.2 220,416 3.0 93,637 3.0

Insurance Type

Commercial group 7,880,707 73.8 3,380,597 73.9 4,519,739 61.1 1,918,158 60.9

High deductible 897,801 8.4 386,281 8.4 485,655 6.6 208,293 6.6

Individual coverage 1,935,265 18.1 832,699 18.2 1,661,780 22.5 705,697 22.4

Medicaid 765,952 7.2 325,685 7.1 683,477 9.2 294,736 9.4

Medicare 1,782,532 16.7 755,991 16.5 2,265,968 30.6 969,796 30.8

PHQ item 9 recorded at index visit 1,686,941 15.8 722,096 15.8 647,512 8.8 277,343 8.8

Response: 0 1,271,675 11.9 543,740 11.9 518,510 7.0 221,658 7.0

Response: 1 269,851 2.5 115,745 2.5 83,323 1.1 36,185 1.1

Response: 2 85,849 0.8 36,713 0.8 27,865 0.4 12,057 0.4

Response: 3 59,566 0.6 25,898 0.6 17,814 0.2 7,443 0.2

PHQ first 8 items recorded at index visit 1,588,334 14.9 680,686 14.9 650,013 8.8 278,422 8.8

Response: 0–4 339,846 3.2 146,334 3.2 145,933 2.0 62,569 2.0

Response: 5–10 542,376 5.1 233,253 5.1 197,128 2.7 84,534 2.7

Response: 11–15 344,902 3.2 147,926 3.2 152,240 2.1 65,270 2.1

Response: 16–20 238,242 2.2 101,691 2.2 109,449 1.5 46,896 1.5

Response: 21 or higher 122,968 1.2 51,482 1.1 45,263 0.6 19,153 0.6

Anxietyb 7,624,535 71.4 3,269,179 71.5 3,950,506 53.4 1,689,565 53.6

Bipolarb 1,392,701 13 59,8493 13.1 402,747 5.4 169,089 5.4

Depressionb 7,801,374 73.1 3,346,230 73.1 4,180,781 56.5 1,786,933 56.7

Personality disorderb 1,936,921 18.1 831,921 18.2 796,739 10.8 341,844 10.8

Schizophrenia or other psychosis disorderb 841,916 7.9 357,430 7.8 358,643 4.8 150,803 4.8

Traumatic brain injuryb 367,608 3.4 154,871 3.4 258,996 3.5 116,565 3.7

Prior mental health inpatient stayc 2,524,909 23.7 1,074,142 23.5 1,552,680 21.0 670,192 21.3

Prior mental health emergency department visitc 3,663,903 34.3 1,577,142 34.5 2,257,382 30.5 964,169 30.6

Prior mental health outpatient visitb 9,783,618 91.7 4,193,770 91.7 3,374,977 45.6 1,449,018 46.0

Prior antidepressant fillc 7,280,659 68.2 3,129,478 68.4 4,411,861 59.6 1,883,486 59.8

Prior benzodiazepine fillc 4,910,042 46.0 2,100,434 45.9 2,976,874 40.2 1,273,370 40.4

Prior first generation antipsychotic fillc 690,501 6.5 301,831 6.6 411,853 5.6 173,280 5.5

Prior lithium fillc 440,354 4.1 188,538 4.1 96,506 1.3 39,892 1.3

Prior second generation antipsychotic fillc 2,277,230 21.3 980,716 21.4 692,907 9.4 299,019 9.5

aIndividuals who reported more than one listed race and ethnicity contribute to all selected racial and ethnic subgroups.
bAt least one diagnosis in the last 60 months.
cAt least one prescription filled in the last 60 months.
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Table 3. Prediction performance in entire validation data for suicide attempt in the 90 days following an outpatient visit; 95% confidence intervals
(CIs) constructed using 10,000 bootstrap samples.

Prediction Model AUC (95% CI) Brier score
(95% CI)

F-score of 99th
percentile (95% CI)

Sensitivity of 99th
percentile (95% CI)

Specificity of 99th
percentile (95% CI)

PPV† of 99th
percentile (95% CI)

90-day suicide attempt following mental health specialty visits.

OP 0.848
(0.846, 0.851)

6.4 × 10−3

(6.3,6.4) x10−3
0.126
(0.123, 0.130)

0.160
(0.156, 0.164)

0.991
(0.991, 0.991)

0.104
(0.102, 0.107)

LR 0.850
(0.848, 0.853)

6.4 × 10−3

(6.3,6.4) x10−3
0.132
(0.129, 0.135)

0.181
(0.176, 0.185)

0.990
(0.990, 0.990)

0.104
(0.101, 0.106)

RF 0.846
(0.844, 0.849)

6.3 × 10−3

(6.2,6.4) x10−3
0.135
(0.131, 0.138)

0.172
(0.167, 0.176)

0.991
(0.991, 0.991)

0.111
(0.108, 0.114)

ANN 0.853
(0.850, 0.855)

6.3 × 10−3

(6.2,6.3) x10−3
0.136
(0.133, 0.140)

0.172
(0.167, 0.176)

0.991
(0.991, 0.991)

0.113
(0.110, 0.116)

Ensemble: LR/RF 0.857
(0.855, 0.859)

6.3 × 10−3

(6.2,6.3) x10−3
0.137
(0.134, 0.140)

0.183
(0.178, 0.187)

0.990
(0.990, 0.990)

0.110
(0.107, 0.112)

Ensemble: RF/ANN 0.857
(0.855, 0.859)

6.3 × 10−3

(6.2,6.3) x10−3
0.138
(0.135, 0.141)

0.174
(0.170, 0.179)

0.991
(0.991, 0.991)

0.114
(0.111, 0.117)

Ensemble: LR/ANN 0.854
(0.852, 0.856)

6.3 × 10−3

(6.2,6.4) x10−3
0.135
(0.132,0.139)

0.180
(0.176, 0.184)

0.990
(0.990, 0.990)

0.108
(0.106, 0.111)

Ensemble: LR/RF/
ANN

0.858
(0.856, 0.860)

6.3 × 10−3

(6.2,6.3) x10−3
0.138
(0.135, 0.141)

0.182
(0.178, 0.186)

0.990
(0.990, 0.991)

0.111
(0.109, 0.114)

90-day suicide attempt following mental health visits to a general medical provider.

OP 0.839
(0.834, 0.843)

3.3 × 10−3

(3.2,3.3) x10−3
0.105
(0.101, 0.109)

0.214
(0.206, 0.222)

0.990
(0.990, 0.991)

0.070
(0.067, 0.072)

LR 0.839
(0.835, 0.843)

3.2 × 10−3

(3.2,3.2) x10−3
0.103
(0.099, 0.107)

0.211
(0.203, 0.219)

0.990
(0.990, 0.990)

0.068
(0.066, 0.071)

RF 0.840
(0.836, 0.844)

3.3 × 10−3

(3.2,3.3) x10−3
0.099
(0.095, 0.103)

0.211
(0.203, 0.218)

0.990
(0.990, 0.990)

0.065
(0.062, 0.067)

ANN 0.840
(0.836, 0.844)

3.3 × 10−3

(3.2,3.3) x10−3
0.109
(0.105, 0.114)

0.222
(0.214, 0.230)

0.990
(0.990, 0.991)

0.073
(0.070, 0.075)

Ensemble: LR/RF 0.846
(0.842, 0.850)

3.3 × 10−3

(3.2,3.3) x10−3
0.106
(0.102, 0.110)

0.221
(0.213, 0.229)

0.990
(0.990, 0.990)

0.070
(0.067, 0.073)

Ensemble: RF/ANN 0.846
(0.842, 0.850)

3.3 × 10−3

(3.2,3.3) x10−3
0.110
(0.106, 0.114)

0.230
(0.222, 0.239)

0.990
(0.990, 0.990)

0.072
(0.069, 0.075)

Ensemble: LR/ANN 0.841
(0.837, 0.846)

3.3 × 10−3

(3.2,3.3) x10−3
0.107
(0.103, 0.111)

0.221
(0.212, 0.229)

0.990
(0.990, 0.990)

0.071
(0.068, 0.074)

Ensemble: LR/RF/
ANN

0.847
(0.842, 0.851)

3.3 × 10−3

(3.2,3.3) x10−3
0.109
(0.105, 0.113)

0.224
(0.216, 0.232)

0.990
(0.990, 0.990)

0.072
(0.069, 0.074)

AUC area under the receiver operating curve, PPV positive predicted value, OP original parsimonious, LR logistic regression with Lasso variable selection,
RF random forest, ANN artificial neural network.

Table 2. Percentage of visits followed by a suicide attempt and death in validation sample for mental health specialty visits and general medical
visits, overall and across racial and ethnic subgroups and sex.

Mental health specialty visits General medical visits

30-day suicide
attempt rate

90-day suicide
attempt rate

90-day suicide
death rate

30-day suicide
attempt rate

90-day suicide
attempt rate

90-day suicide
death rate

Overall 0.27 0.65 0.023 0.15 0.33 0.014

Sex

Male 0.23 0.55 0.036 0.16 0.34 0.025

Female 0.30 0.71 0.015 0.14 0.33 0.007

Race

American Indian/Alaska Native 0.32 0.80 0.016 0.28 0.63 0.010

Asian 0.25 0.56 0.020 0.13 0.26 0.014

Black/African American 0.22 0.52 0.002 0.15 0.33 0.006

Native Hawaiian/Pacific Islander 0.25 0.61 0.016 0.16 0.33 0.004

White, non-Hispanic 0.29 0.71 0.027 0.16 0.36 0.016

Hispanic ethnicity 0.26 0.62 0.014 0.11 0.27 0.006
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Fig. 1 Receiver operating characteristic (ROC) curves for each prediction modeling approach (using optimal tuning parameters,
estimated in the validation dataset) in both settings (mental health specialty and general medical) for 30- and 90-day suicide attempt
(fatal and nonfatal) models and 90-day suicide death models. Each figure panel represents ROC curves for different samples, outcomes, and
follow-up periods. (a): 30-day suicide attempt prediction models, mental health specialty visits; (b): 30-day suicide attempt prediction models,
general medical visits; (c): 90-day suicide attempt prediction models, mental health specialty visits; (d): 90-day suicide attempt prediction
models, general medical visits; (e): 90-day suicide prediction models, mental health specialty visits; (f): 30-day suicide prediction models,
general medical visits. Original parsimonious (yellow long-dashed line); Logistic regression with lasso variable selection (green long-short-
dashed line); Random forest (blue short-dashed line); Artificial neural network (orange medium-dashed line); Ensemble= ensemble model
using logistic regression, random forests, and artificial neural networks with detailed temporal predictors (solid black line).
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Fig. 2 Precision-recall curves for each prediction modeling approach (using optimal tuning parameters, estimated in the validation
dataset) in in both settings (mental health specialty and general medical) for 30- and 90-day suicide attempt (fatal and nonfatal) models
and 90-day suicide death models. Each figure panel represents precision-recall curves for different samples, outcomes, and follow-up
periods. (a): 30-day suicide attempt prediction models, mental health specialty visits; (b): 30-day suicide attempt prediction models, general
medical visits; (c): 90-day suicide attempt prediction models, mental health specialty visits; (d): 90-day suicide attempt prediction models,
general medical visits; (e): 90-day suicide prediction models, mental health specialty visits, (f): 30-day suicide prediction models, general
medical visits. Original parsimonious (yellow long-dashed line); Logistic regression with lasso variable selection (green long-short-dashed line);
Random forest (blue short-dashed line); Artificial neural network (orange medium-dashed line); Ensemble= ensemble model using logistic
regresssion, random forest, and artificial neural network models with detailed temporal predictors (solid black line).
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outcomes (Fig. 3, Supplementary Table 8), the full ensemble
model had the highest AUC for all racial and ethnic subgroups
(full ensemble AUCs ranged from 0.838–0.863) except for the
American Indian/Alaska Native subgroups and Native Hawaiian/
Pacific Islander. The random forest model had poorer perfor-
mance in these subgroups (AUC 0.823 [0.800, 0.846] and 0.805
[0.778, 0.831], respectively); thus, the ensemble model with just

the artificial neural network and logistic regression had the
strongest performance for the Native Hawaiian/Pacific Islander
subgroup (AUC 0.844 [0.821, 0.866]), and the artificial neural
network model alone had the strongest performance for the
American Indian/Alaska Native subgroup (AUC 0.844 [0.823,
0.864]). The AUC of the original parsimonious model across
known racial and ethnic groups ranged from 0.830 to 0.861, and

Table 4. Calibration tables for all models in mental health specialty and general medical samples with percentiles defined on training dataset and
applied to validation dataset.

OP LR RF ANN Full ensemble

Percentile Avg p̂ Obs rate Avg p̂ Obs rate Avg p̂ Obs rate Avg p̂ Obs rate Avg p̂ Obs rate

30-day suicide attempt (fatal and nonfatal) prediction models, mental health specialty

0–50% 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.05 0.03

50–75% 0.15 0.13 0.14 0.12 0.16 0.14 0.15 0.13 0.15 0.12

75–90% 0.34 0.38 0.31 0.34 0.37 0.39 0.38 0.38 0.35 0.37

90–95% 0.73 0.80 0.65 0.71 0.74 0.71 0.82 0.84 0.73 0.74

95–99% 1.93 1.84 1.57 1.69 1.69 1.66 1.65 1.68 1.61 1.72

99–100% 7.69 4.99 8.78 4.95 5.19 5.32 5.87 5.62 6.41 5.49

30-day suicide attempt (fatal and nonfatal) prediction models, general medical

0–50% 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

50–75% 0.07 0.07 0.08 0.07 0.09 0.07 0.09 0.07 0.09 0.07

75–90% 0.16 0.15 0.16 0.15 0.20 0.18 0.21 0.15 0.19 0.16

90–95% 0.35 0.41 0.31 0.33 0.37 0.39 0.42 0.37 0.37 0.36

95–99% 0.87 0.90 0.72 0.75 0.74 0.76 0.99 0.83 0.82 0.82

99–100% 4.62 3.43 4.81 3.28 3.28 3.30 4.59 3.75 4.05 3.53

90-day suicide attempt (fatal and nonfatal) prediction models, mental health specialty

0–50% 0.13 0.10 0.13 0.10 0.11 0.11 0.07 0.09 0.12 0.09

50–75% 0.36 0.35 0.35 0.32 0.39 0.34 0.28 0.36 0.35 0.33

75–90% 0.84 0.95 0.76 0.84 0.89 0.93 0.74 0.93 0.80 0.92

90–95% 1.82 1.96 1.58 1.93 1.75 1.86 1.60 1.96 1.64 1.77

95–99% 4.56 4.27 3.74 3.98 3.83 3.90 3.22 4.22 3.53 4.25

99–100% 14.94 10.44 16.02 10.37 10.91 11.09 11.58 11.29 12.30 11.13

90-day suicide attempt (fatal and nonfatal) prediction models, general medical

0–50% 0.07 0.07 0.07 0.07 0.07 0.06 0.07 0.06 0.08 0.06

50–75% 0.16 0.16 0.18 0.17 0.20 0.17 0.15 0.15 0.18 0.16

75–90% 0.36 0.37 0.37 0.38 0.44 0.42 0.32 0.36 0.38 0.38

90–95% 0.79 0.97 0.73 0.89 0.85 0.90 0.66 0.82 0.75 0.86

95–99% 1.92 2.09 1.66 2.13 1.73 1.93 1.56 2.17 1.63 2.13

99–100% 8.56 6.96 8.83 6.85 6.67 6.49 8.29 7.26 7.57 7.17

90-day suicide death prediction models, mental health specialty

0–50% 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

50–75% 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02

75–90% 0.03 0.03 0.03 0.04 0.04 0.03 0.02 0.04 0.03 0.03

90–95% 0.06 0.07 0.06 0.07 0.07 0.07 0.05 0.07 0.06 0.08

95–99% 0.15 0.14 0.15 0.13 0.12 0.12 0.14 0.14 0.13 0.15

99–100% 0.64 0.35 0.71 0.28 0.25 0.25 0.70 0.21 0.47 0.30

90-day suicide death prediction models, general medical

0–50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50–75% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

75–90% 0.02 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02

90–95% 0.05 0.04 0.04 0.04 0.04 0.03 0.07 0.04 0.05 0.04

95–99% 0.10 0.08 0.09 0.08 0.08 0.08 0.17 0.08 0.10 0.07

99–100% 0.43 0.23 0.71 0.20 0.19 0.11 0.96 0.21 0.56 0.25

OP original parsimonious, LR logistic regression with lasso variable selection, RF random forest, ANN artificial neural network, Avg p̂ the average predicted risk
score in the subgroup, Obs rate observed outcome rate in the subgroup.
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the differences between the best performing model and the
original parsimonious model ranged from 0 to 0.011.
In the mental health specialty sample for 90-day suicide

attempt, the full ensemble model with detailed temporal
predictors had the highest AUC for women (0.865 [0.862, 0.867],
Fig. 3, Supplementary Table 9) and men (0.843 [0.839, 0.847]); this
was a modest increase over the original parsimonious models
(AUC women: 0.858 [0.855, 0.861] and men: 0.825 [0.821, 0.829]).

DISCUSSION
In this large sample of outpatient mental health specialty visits
across seven health systems, the performance of suicide risk
prediction models, both parametric and non-parametric, using
approximately 1,500 detailed temporal predictors was similar to
previously developed parsimonious risk prediction models
relying on less than 100 predictors. While a full ensemble model,
averaging predictions from three models using all detailed
temporal predictors, often performed best (AUCs of approxi-
mately 0.85), the improvement over the much simpler, previously
developed logistic regression model was small (improvements
in AUC ranging from 0.006 to 0.020; improvements in

99th-percentile PPV ranging from 0.000 to 0.070). This pattern
held across subgroups defined by race, ethnicity, and sex, across
performance metrics, and across 30- and 90-day follow-up for
observing suicidal behavior.
The suicide prediction models estimated and compared in this

study were developed at the visit level, which allows the models
to identify both which individuals are at risk as well as when
individuals are at risk. This analytic approach is in contrast to many
previously developed and compared suicide risk prediction
models that have relied on one observation per person, often
using a case-control sampling approach, and focused on
identifying who is at risk at a particular point in time given
available data at that time. Most research groups have incorpo-
rated temporal information into predictors in a simplistic way,
similar to the original parsimonious model examined here. In
particular, Bayramli and colleagues’21 work, which centered on
random forests and naïve Bayesian classifiers, found that including
time since first visit, number of visits since the first visit, and visit
rate during their time at the health system was helpful for
identifying who is at high risk for suicide (AUC when no temporal
variables, 0.808; AUC with temporal variables 0.824). The type of
temporal information found to be important by Bayramli and

Table 5. Prediction performance in entire validation data for suicide attempt in the 30 days following an outpatient visit; 95% confidence intervals
(CIs) constructed using 10,000 bootstrap samples.

Prediction model AUC (95% CI) Brier score
(95% CI)

F-score of 99th
percentile (95% CI)

Sensitivity of 99th
percentile (95% CI)

Specificity of 99th
percentile (95% CI)

PPV of 99th
percentile (95% CI)

30-day suicide attempt following mental health specialty visits.

OP 0.857
(0.853, 0.860)

2.7 × 10−3

(2.6,2.7) x10−3
0.078
(0.075, 0.082)

0.183
(0.176, 0.190)

0.990
(0.990, 0.991)

0.050
(0.048, 0.052)

LR‡ 0.858
(0.855, 0.862)

2.7 × 10−3

(2.7,2.8) x10−3
0.081
(0.078, 0.084)

0.224
(0.217, 0.232)

0.988
(0.988, 0.988)

0.049
(0.048, 0.051)

RF 0.855
(0.853, 0.859)

2.7 × 10−3

(2.6,2.7) x10−3
0.084
(0.081, 0.087)

0.201
(0.195, 0.208)

0.990
(0.990, 0.990)

0.053
(0.051, 0.055)

ANN 0.860
(0.857, 0.863)

2.7 × 10−3

(2.6,2.7) x10−3
0.088
(0.085, 0.092)

0.207
(0.200, 0.214)

0.990
(0.990, 0.991)

0.056
(0.054, 0.058)

Ensemble: LR/RF 0.866
(0.863, 0.869)

2.7 × 10−3

(2.6,2.7) x10−3
0.087
(0.084, 0.090)

0.227
(0.220, 0.235)

0.989
(0.989, 0.989)

0.054
(0.052, 0.055)

Ensemble: RF/ANN 0.866
(0.863, 0.869)

2.7 × 10−3

(2.6,2.7) x10−3
0.089
(0.086, 0.092)

0.210
(0.203, 0.217)

0.990
(0.990, 0.991)

0.057
(0.055, 0.059)

Ensemble: LR/ANN 0.863
(0.862, 0.866)

2.7 × 10−3

(2.6,2.7) x10−3
0.086
(0.083, 0.089)

0.225
(0.218, 0.232)

0.989
(0.989, 0.989)

0.053
(0.052, 0.055)

Ensemble: LR/RF/
ANN

0.867
(0.864, 0.870)

2.7 × 10−3

(2.6,2.7) x10−3
0.088
(0.085, 0.091)

0.225
(0.218, 0.232)

0.989
(0.989, 0.990)

0.055
(0.053, 0.057)

30-day suicide attempt following mental health visits to a general medical provider.

OP 0.842
(0.836, 0.849)

1.4 × 10−3

(1.4,1.5) x10−3
0.060 (0.057, 0.063) 0.241 (0.228, 0.253) 0.990

(0.990, 0.990)
0.034 (0.032, 0.036)

LR 0.839
(0.832, 0.845)

1.4 × 10−3

(1.4,1.5) x10−3
0.058
(0.055, 0.061)

0.263
(0.251, 0.276)

0.989
(0.988, 0.989)

0.033
(0.031, 0.035)

RF 0.838
(0.832, 0.845)

1.4 × 10−3

(1.4,1.5) x10−3
0.058
(0.055, 0.061)

0.247
(0.234, 0.259)

0.989
(0.989, 0.990)

0.033
(0.031, 0.035)

ANN 0.843
(0.836, 0.849)

1.4 × 10−3

(1.4,1.5) x10−3
0.066
(0.062, 0.069)

0.259
(0.247, 0.272)

0.990
(0.990, 0.990)

0.038
(0.035, 0.040)

Ensemble: LR/RF 0.847
(0.841, 0.853)

1.4 × 10−3

(1.4,1.5) x10−3
0.060
(0.056, 0.063)

0.258
(0.246, 0.271)

0.989
(0.989, 0.989)

0.034
(0.032, 0.036)

Ensemble: RF/ANN 0.846
(0.840, 0.852)

1.4 × 10−3

(1.4,1.5) x10−3
0.064
(0.060, 0.067)

0.261
(0.249, 0.274)

0.990
(0.990, 0.990)

0.036
(0.034, 0.038)

Ensemble: LR/ANN 0.844
(0.838, 0.851)

1.4 × 10−3

(1.4,1.5) x10−3
0.063
(0.060, 0.066)

0.265
(0.252, 0.278)

0.989
(0.989, 0.990)

0.036
(0.034, 0.038)

Ensemble: LR/RF/
ANN

0.848
(0.842, 0.854)

1.4 × 10−3

(1.4,1.5) x10−3
0.062
(0.059, 0.066)

0.262
(0.249, 0.275)

0.990
(0.989, 0.990)

0.035
(0.033, 0.037)

AUC area under the receiver operating curve, PPV positive predicted value, OP original parsimonious, LR logistic regression with lasso variable selection,
RF random forest, ANN artificial neural network.
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colleagues21 has often been included in suicide risk prediction
models; yet no prior work explored the importance of such
detailed temporal predictors as in our study.
As discussed in the introduction, Chen and colleagues18 used a

visit-based sampling framework similar to ours and estimated a
variety of models, including random forests, logistic regression,
and neural networks, to predict suicidal behavior after a mental
health specialty visit using Swedish health records and national
registry data. The top performing ensemble model, using all 425
predictors, provided a 0.006 improvement in AUC over a logistic
model using 100 predictors. Chen and colleagues observed
slightly better performance (top performing model for 90-day
suicide attempt had AUC of 0.882) than observed in our study
(AUC 0.858). While our models included more detailed temporal
predictors, these predictors were all functions of health care
services received, primarily mental health care services. In
contrast, predictors used by Chen and colleagues included
information on an individual’s education, employment, and
known criminal offenses; parental education, employment, and
known criminal offenses; and family history of disease. The
magnitude of performance improvement between this model,

which included social determinants and negative life events, and
our model, which did not, was minimal.
Our estimated models included a large number of predictors,

primarily related to mental health care utilization, including
detailed and complex temporal pattern variables. Substantial
effort by subject matter experts was made to curate potential
predictors. This curation was likely a key contributor to the strong
performance of our prediction models, including the simpler
parsimonious model. This approach entails high up-front devel-
opment costs but has advantages including the potential for
greater face validity to clinicians and health system leaders. The
relative transparency of a logistic regression can improve trust and
clinician understanding of what is, and what is not, used to
produce risk predictions. Transparency and trust are important for
successful implementation of risk models into clinical care31.
Additional considerations for implementation are the personnel

and computational resources required for integrating risk prediction
models, with routine updating of predictions, into electronic
health record systems. The US Veterans Health Administration has
implemented suicide risk prediction models into clinical care and
specifically elected to use a simpler model with fewer predictors30.
Pragmatically, it is easier to write a program to create 100 predictors

Table 6. Prediction performance in entire validation data for suicide death in the 90 days following an outpatient visit; 95% confidence intervals (CIs)
constructed using 10,000 bootstrap samples.

Prediction Model AUC (95% CI) Brier score
(95% CI)

F-score of 99th
percentile (95% CI)

Sensitivity of 99th
percentile (95% CI)

Specificity of 99th
percentile (95% CI)

PPV of 99th
percentile (95% CI)

Suicide death in the 90 days following a mental health specialty visit.

OP 0.823
(0.808, 0.837)

2.3 × 10−3

(2.2,2.4) x10−3
0.007
(0.006, 0.008)

0.153
(0.131, 0.177)

0.990
(0.990, 0.990)

0.004
(0.003, 0.004)

LR 0.815
(0.801, 0.828)

2.3 × 10−3

(2.2,2.5) x10−3
0.006
(0.005, 0.007)

0.124
(0.105, 0.145)

0.990
(0.990, 0.990)

0.003
(0.002, 0.003)

RF 0.794
(0.780, 0.808)

2.3 × 10−3

(2.2,2.4) x10−3
0.005
(0.004, 0.006)

0.116
(0.096, 0.136)

0.989
(0.989, 0.990)

0.003
(0.002, 0.003)

ANN 0.821
(0.809, 0.833)

2.3 × 10−3

(2.2,2.5) x10−3
0.004
(0.003, 0.005)

0.092
(0.075, 0.111)

0.990
(0.990, 0.990)

0.002
(0.002, 0.002)

Ensemble: LR/RF 0.832
(0.820, 0.844)

2.3 × 10−3

(2.2,2.4) x10−3
0.005
(0.004, 0.006)

0.119
(0.100, 0.140)

0.990
(0.989, 0.990)

0.003
(0.002, 0.003)

Ensemble: RF/ANN 0.823
(0.811, 0.835)

2.3 × 10−3

(2.2,2.4) x10−3
0.005
(0.004, 0.006)

0.112
(0.093, 0.132)

0.989
(0.989, 0.989)

0.002
(0.002, 0.003)

Ensemble: LR/ANN 0.828
(0.815, 0.840)

2.3 × 10−3

(2.2,2.4) x10−3
0.006
(0.005, 0.007)

0.139
(0.118, 0.161)

0.990
(0.990, 0.990)

0.003
(0.003, 0.004)

Ensemble: LR/RF/
ANN

0.837
(0.825, 0.849)

2.3 × 10−3

(2.2,2.4) x10−3
0.006
(0.005, 0.007)

0.136
(0.115, 0.157)

0.990
(0.989, 0.990)

0.003
(0.003, 0.004)

Suicide death in the 90 days following a mental health visit to a general medical provider.

OP 0.816
(0.794, 0.837)

1.4 × 10−3

(1.3,1.5) x10−3
0.005
(0.004, 0.006)

0.170
(0.134, 0.207)

0.990
(0.990, 0.990)

0.002
(0.002, 0.003)

LR 0.812
(0.789, 0.834)

1.4 × 10−3

(1.3,1.6) x10−3
0.004
(0.003, 0.005)

0.152
(0.118, 0.188)

0.989
(0.989, 0.989)

0.002
(0.001, 0.002)

RF 0.794
(0.774, 0.813)

1.4 × 10−3

(1.3,1.5) x10−3
0.002
(0.001, 0.003)

0.088
(0.061, 0.117)

0.989
(0.989, 0.989)

0.001
(0.001, 0.001)

ANN 0.812
(0.788, 0.834)

1.4 × 10−3

(1.3,1.6) x10−3
0.004
(0.003, 0.005)

0.152
(0.118, 0.188)

0.990
(0.990, 0.990)

0.002
(0.001, 0.003)

Ensemble: LR/RF 0.827
(0.808, 0.846)

1.4 × 10−3

(1.3,1.5) x10−3
0.004
(0.003, 0.005)

0.155
(0.120, 0.191)

0.989
(0.989, 0.989)

0.002
(0.002, 0.003)

Ensemble: RF/ANN 0.833
(0.813, 0.851)

1.4 × 10−3

(1.3,1.5) x10−3
0.004
(0.003, 0.006)

0.162
(0.127, 0.199)

0.990
(0.990, 0.990)

0.002
(0.002, 0.003)

Ensemble: LR/ANN 0.824
(0.802, 0.845)

1.4 × 10−3

(1.3,1.6) x10−3
0.004
(0.003, 0.005)

0.170
(0.134, 0.207)

0.989
(0.989, 0.990)

0.002
(0.002, 0.003)

Ensemble: LR/RF/
ANN

0.836
(0.816, 0.854)

1.4 × 10-3

(1.3,1.5) x10-3
0.005
(0.004, 0.006)

0.184
(0.147, 0.223)

0.990
(0.989, 0.990)

0.002
(0.002, 0.003)

AUC area under the receiver operating curve, PPV positive predicted value, OP original parsimonious, LR logistic regression with lasso variable selection,
RF random forest, ANN artificial neural network.
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Fig. 3 Variation in area under the receiver operating curve (AUC) across racial and ethnic groups for all suicide risk prediction models.
Each figure panel represents variation in AUC across racial and ethnic groups for different samples, outcomes, and follow-up periods. (a):
30-day suicide attempt prediction models, mental health specialty visits; (b): 30-day suicide attempt prediction models, general medical visits;
(c): 90-day suicide attempt prediction models, mental health specialty visits; (d): 90-day suicide attempt prediction models, general medical
visits; (e): 90-day suicide prediction models, mental health specialty visits; (f): 90-day suicide prediction models, general medical visits. AI/
AN= American Indian/Alaska Native; AS= Asian; BA/AA= Black/African American; NH/PI=Native Hawaiian/Pacific Islander; WH, non-Hisp =
white, non-Hispanic; Hisp = Hispanic; UNK= unknown. Original parsimonious (yellow); Logistic regression with lasso variable selection
(green); Random forest (blue); Artificial neural network (orange); Ensemble model using logistic regression, random forest, and artificial neural
network models with detailed temporal predictors (black). Dots represent AUC in left out validation sample and lines represent upper and
lower bounds on 95% confidence intervals based on 10,000 bootstrap samples. Note, due to low number of suicide deaths observed in
individuals selecting AI/AN, BA/AA, or NH/PI, confidence intervals for 90-day suicide death were not constructed.
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Fig. 4 Variation in area under the receiver operating curve (AUC) across men and women for all suicide risk prediction models.
Dots represent AUC in left out validation sample and the lines represent upper and lower bounds on 95% confidence intervals based on 10,000
bootstrap samples. Each figure panel represents variation in AUC across mend and women for different samples, outcomes, and follow-up
periods. (a): 30-day suicide attempt prediction models, mental health specialty visits; (b): 30-day suicide attempt prediction models, general
medical visits. (c): 90-day suicide attempt prediction models, mental health specialty visits. (d): 90-day suicide attempt prediction models, general
medical visits. (e): 90-day suicide prediction models, mental health specialty visits. (f): 30-day suicide prediction models, general medical visits.
Original parsimonious (yellow); Logistic regression with lasso variable selection (green); Random forest (blue); Artificial neural network (orange);
Ensemble model using logistic regression, random forest, and artificial neural network models with detailed temporal predictors (black).

S.M. Shortreed et al.

11

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)    47 



than it is one for 1500 predictors. Less memory is required to store
logistic regression coefficients compared to complex models like
random forests. Finally, basic mathematical functions (e.g., addition,
multiplication, exponentiations) are fast to compute; this is
important because computationally intensive prediction updates
on an entire population could interfere with access to, or slow
performance of, the electronic health record system, potentially
compromising patient care.
Implementation of risk prediction models should consider their

intended uses and the potential harms and benefits of both false
positives and false negatives in those contexts. For example,
suicide risk prediction models generally have low PPV. Low PPV
and the potential for harm from coercive care measures (e.g.,
involuntary psychiatric holds) preclude reliance on risk prediction
models to drive such decisions. Low-risk interventions may be
more usefully informed by model-based risk stratification however
even when PPV is low. Current implementations alert providers to
conduct additional risk assessment32,33, and models that robustly
concentrate risk could inform allocation of scarcer resources, e.g.,
therapists skilled in providing evidence-based treatments34–36.
Considering potential harms and benefits across all subgroups

is crucial; model performance28 and potential for harm from
intervention (e.g., “wellness” checks conducted by police) may
vary by subgroup. Although estimated performance of our model
did not vary by demographics, confidence intervals for some
subgroups were wide. Any implementation should involve
conversations with clinicians and health system leaders around
these, and other limitations, of risk-modeling and appropriate
clinical workflow. When more evidence-based, preventive inter-
ventions are available, these models can help target their delivery.
The strengths of our study include a large overall sample size

allowing us to use large training datasets for developing
prediction models while retaining a large independent valida-
tion dataset to estimate performance. The data used for model
building and evaluating performance includes several million
patients from broad geographic regions. We considered multi-
ple tuning parameter values for each of the modeling strategies
and used cross-validation, following recommended procedures
to divide folds at the person level to protect against overfitting
in our model development process37. We also consider the
ability to identify not just who but when individuals are at high
risk, inherent in our visit-based predictive modeling strategy, a
strength of our work.
Our findings that detailed temporal predictors and more

complex modeling strategies offered little improvement over a
more parsimonious logistic regression model may be specific to
this setting and these data. It is possible that including different
predictors, such as information on general medical utilization,
negative life events, and financial transactions, would result in
meaningful differences between the methods and predictor sets
we compared. Additionally, the findings we report here might
not apply to different prediction targets or settings, including
prediction for individuals not engaged in mental health care.
Our results are also limited to the 30- and 90-day windows used
for assessing suicide attempts and 90-day window for suicide
deaths; it is possible that different performance and/or
differences between models would be observed using different
follow-up periods.
Information on gender identity and sexual orientation were not

available. At the time of data extraction only sex assigned at birth
was available in the health systems records data; all health
systems are currently expanding collection of patients’ sexual
orientation and gender identity, including gender transitions,
which could improve model performance overall and among
sexual and gender minorities, populations for which suicide
prevention research is critical38–40.
Outcomes included fatal and nonfatal self-harm, certainly

including some instances of self-harm without suicidal intent.

Self-harm with and without suicidal intent cannot be distin-
guished using ICD-10-CM coding of nonfatal events or ICD-10
coding of fatal events.
Our current work compared performance of newly developed

risk prediction models to performance of a previously published
algorithm (original parsimonious models). We were unable to
identify and exclude the visits from the current validation dataset
that were used to train the previous (original parsimonious
models) models; thus, it is possible that our estimates of
performance of the original parsimonious model are slightly
optimistic. However, there was little overfitting observed during
the development of the original parsimonious models; perfor-
mance in validation data was nearly identical to that in training
data15. We also note that nonfatal suicide attempts were extracted
from health records, and suicide deaths were identified from state
death records. It is possible these records could misclassify suicide
attempts and deaths, although recent work has observed that
misclassification rates are low41.
The improvement in performance gained by increasing

complexity of the modeling strategy and predictor set was
small in this study of building risk prediction models for suicidal
behavior using data from electronic health records. This
improvement in performance should be considered in relation
to the challenges of implementing complex models, relying on
hundreds of predictors, in clinical care.

METHODS
Study setting and population
All outpatient mental health visits made by individuals 11 years
and older between January 1, 2009 and September 30, 2017 in 7
health care systems (HealthPartners, Henry Ford Health System,
and the Colorado, Hawaii, Northwest, Southern California, and
Washington regions of Kaiser Permanente) were included. An
outpatient mental health visit was defined as an outpatient visit to
a mental health specialty provider or a visit made to a general
medical provider with a mental health diagnosis (referred to here
as general medical visits). Predictions were made at the visit level,
and people could contribute more than one visit to our sample.
We use the term index visit to indicate the visits for which
predictions are to be made, with predictors observed up to and
including the day of the index visit and outcome information
gathered after. Responsible institutional review boards for each
participating health system approved waivers of consent for use of
records data in this research: Henry Ford Health institutional
review board ([IRB], #9998, Henry Ford Health System), Kaiser
Permanente Colorado IRB (#00002931, Kaiser Permanente Color-
ado), and Kaiser Permanente Interregional IRB (#799744, Washing-
ton, HealthPartners, Hawaii, Northwest, and Southern California
regions of Kaiser Permanente).

Construction of detailed temporal predictors
Predictors in four categories were extracted from health records
and insurance claims in the 5 years prior to the index visit:
(1) demographics; (2) prior mental health diagnoses (based on
ICD-9-CM and ICD-10-CM codes) and general medical diagnoses
captured by the Charlson comorbidity index42; (3) prior mental
health-related prescription fills; and (4) prior and current (i.e., on
the day of the index visit) responses to the patient health
questionnaire (PHQ), including both PHQ-8 total scores measuring
depressive symptoms and PHQ item 9 assessing suicidal idea-
tion43,44. Predictors incorporated timing, such as how many times a
prior predicting event occurred in a specific time period (e.g., last
3 months or last 5 years), how recently the predicting event
occurred, and how long ago the predicting event first occurred. For
example, detailed temporal predictors related to depression
diagnoses included: number of prior depression diagnoses in the
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last 5 years, number of months since most recent depression
diagnosis, and number of months since first recorded depression
diagnosis (within the 5 years prior to the index visit). This scheme
produced 41 different temporal patterns for each category of
mental health diagnosis and 23 different temporal patterns for
each category of mental health medication, which resulted in 1400
detailed temporal predictors (see Specifications for detailed
temporal predictors below for full description).

Follow-up and outcomes
We estimated separate models for mental health specialty visits
and general medical visits to predict risk of suicide attempt (both
fatal and nonfatal) in the subsequent 30 and 90 days and suicide
death in the subsequent 90 days; there were too few suicide
deaths to estimate risk in the 30 days following a visit. In this
study, suicide attempt is defined as a documented diagnosis of
self-harm. Suicides were identified using state death certificates
with cause of death ICD-10 mortality codes in the ranges X60-X84,
Y10-Y34, Y87.0, and Y87.2. Nonfatal suicide attempts were
identified using diagnosis codes from electronic health records
and insurance claims. Non-fatal suicide attempts on or before
September 30, 2015 were identified using ICD-9-CM diagnosis
codes E950-E958 (suicide and self-inflicted injury) or E980-E988
(injury of undetermined intent). After September 30, 2015, non-
fatal suicide attempts were identified using ICD-10-CM diagnosis
codes were used to identify non-fatal suicide attempts. The full
list of ICD-10-CM diagnosis codes used to identify non-fatal
suicide attempts includes over 1000 (non-adjacent) codes and
can be found at: https://github.com/MHResearchNetwork/more-
srpm. We briefly summarize here. An ICD-10 era attempt was
defined as either:(1) the presence of any single code from the
following ranges: (a) X71-X83 (external causes of morbidity
classified as intentional self-harm), (b) Y21-Y33 (external causes
of morbidity of undetermined intent), (c) T36-T65 (poisoning/
toxic effects) or T71 (asphyxiation) initial encounter codes with
“intentional self-harm” or “undetermined intent” in the official
code description, or (d) T14.91 (suicide attempt); or (2) the
presence of suicidal ideation code R45.851 accompanied by an
initial encounter code for a wound (S/T codes with “wound,”
“laceration,” or “traumatic amputation” in the description) or
poisoning/toxic effects (T codes with “poisoning” or “toxic” in the
description) recorded in the same encounter.
To ensure observation of self-harm diagnoses following the

index visit, analyses of suicide attempt models only included index
visits for which the individual was enrolled in the health system at
the index visit and for 90 days following the visit (unless an event
was observed before they disenrolled; no events were excluded).
We gathered outcome information through December 31, 2017;
no index visit used to estimate or evaluate the suicide attempt
models was censored due to study end. Visits used to develop and
evaluate suicide death models were not censored for disenroll-
ment because health systems’ research data warehouses include
cause of death data from state death certificates for all current and
past patients. The timing of when cause of cause of death
information began and ceased to be available varied across health
system. Henry Ford Health System cause of death data was
available starting September 1, 2012 through December 31, 2015,
Kaiser Permanente Colorado had cause of death data available
from January 1, 2009 through December 31, 2017, all other health
systems had cause of death data available from January 1, 2009
through December 31, 2016. Only visits with cause of death data
available during the full follow-up were used to estimate and
validate suicide death models.

Training data, validation data, and tuning parameter selection
Mental health specialty and general medical visits were separately
divided into independent training and validation datasets at the

patient level. All visits from a randomly sampled 30% of patients
were assigned to the validation dataset, and all visits from the
remaining patients were defined as the training dataset; no
patients contributed visits to both training and validation datasets.
Division of observations into training and validation datasets was
done separately for each sample (mental health specialty or
general medical) and outcome (suicide attempt or suicide death).
Prediction model performance at varying combinations of

tuning parameter values for each modeling method (described
below) was estimated using five-fold cross validation45,46. Within
each training dataset, a fold was defined at the person level;
that is, all people in a training dataset were randomly divided into
5 folds, or groups, and all visits for an individual were included
together in a fold. Due to computational burden, not all
combinations of tuning parameters were considered in both
samples for both outcomes. Further, additional tuning parameters
were added (i.e., we widened the tuning parameter search criteria)
as needed to ensure selection of parameters close to an optimum.
Final tuning parameters were selected using the best out-of-fold
AUC. For each outcome, setting, and modeling method, a final
model was estimated on all visits in the training data using the
selected tuning parameters.

Random forest models
We constructed random forests of probability trees47,48. Three
tuning parameters were considered: minimum node size for
considering a split (1000; 10,000; 25,000; 50,000; 100,000; 250,000;
500,000 visits), number of predictors considered at each split (38,
114, 190, 380), and number of trees (10, 100, 500)49. The standard
recommendation is to consider the square root of the number of
predictors at each split, which equaled 38 for this analysis; we
also considered larger numbers of predictors at each split (3, 5,
and 10 times as many) to see if this improved performance49,50.
Examining too few predictors at each split may limit tree growth
if too many predictors are not associated with the outcome
or are closely correlated with predictors already used for a split49.
See Supplementary Table 2 for in-sample results across para-
meter settings and Supplementary Table 3 for selection of
optimal tuning parameters by out-of-sample results. Random
forests were estimated using R package ranger version 0.11.2,
R version 3.5.3 (2019–03–11) and RStudio version 1.1.463.

Artificial neural network models
We implemented feed-forward artificial neural networks (i.e.,
nodes in hidden layers feed information “forward” into other
hidden layers, and the “last” hidden layer feeds into the final
output layer)51–53. We used the logit (sigmoid) activation
function and a small L1-penalty on the first hidden layer inputs
to avoid overfitting. The number of hidden layers (1 or 2) and
the number of nodes per hidden layer (4, 8, or 16) were
considered tuning parameters; see Supplementary Table 4 for
in-sample results and Supplementary Table 5 for selection of
optimal tuning parameters. Artificial neural networks were fit
using the CRAN package Keras version 2.2.5 with RStudio version
1.2.5001 and R version 3.6.1. We used a batch size of 212= 4,096
for the mental health specialty visits and 210= 1,024 for general
medical visits, 100 epochs, and a learning rate of 0.001.
Additional software needed to fit the artificial neural networks
included Tensorflow version 2.0, Anaconda version 4.3.30, and
Python version 3.6.9.

Penalized logistic regression models
We estimated logistic regression models using lasso for variable
selection and coefficient shrinkage54. We used a screening process
to reduce the number of predictors considered in the final model
while still allowing the model to consider a large number of
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interactions among the predictors. During this screening process
we included interactions between several covariates (PHQ item
9 score recorded at index visit, sex, race, and prior suicide attempt)
and most other covariates and used a small penalization term to
reduce the coefficients to zero. All variables defined by interac-
tions with non-zero coefficient values during this screening
process were included along with all predictors to select the
tuning parameter (lambda) and estimate the final model (see
Supplementary Table 5 for in-sample results and Supplementary
Table 7 for out-of-sample results). We used a grid search over 20
lambda values for each combination of outcome and sample. The
same software used to implement the artificial neural networks
was used to estimate the penalized logistic regression models
because of the computational efficiencies and large data capacity
available in the Keras package.

Ensemble models
We estimated ensemble models by taking a simple average of
predictions from all three models (logistic regression, random
forest, and artificial neural networks) as well as averaging
predictions from all pairs of models.

Original parsimonious models
Performance of the above models was also compared to
previously published suicide attempt and suicide death predic-
tion models developed using outpatient mental health visits
made between January 1, 2009 and June 30, 2015 in the same
health systems. The sample of visits used here to develop new
models includes visits used to develop these existing models.
The published prediction models were logistic regression models
with variables selected using lasso15. Predictors covered the
same four categories as above but incorporated less information
about the timing of predictors and fewer possible interactions:
Presence/absence of a predicting event (e.g., recorded diagnosis)
was measured using four different combinations of time-
windows (i.e., at index visit or prior 3 months, 6 months, 1 year,
and 5 years). A total of 325 predictors were considered for these
models; details can be found in the online supplement of
Simon et al15. Approximately 100 predictors were selected in the
suicide attempt models, and approximately 30 predictors were
selected in the suicide death models. We applied the published
coefficients directly without calibration and refer to these
models as the original parsimonious models.

Comparing model performance on the validation sample
Final models were compared on an independent validation
dataset using the following performance metrics: AUC, F-score
(i.e., harmonic mean of precision and recall), and brier score
(which is equivalent to the mean squared error in the binary
outcome setting) as well as sensitivity, specificity, negative
predictive value (NPV), and positive predictive value (PPV) at
different percentile cut points. We calculated 95% confidence
intervals (CIs) using the non-parametric bootstrap with 10,000
iterations. Bootstrapping was performed at the visit level to
represent the variability in the population of outpatient mental
health visits (rather than at the person level to represent the
variability in the patient population). We present plots of receiver
operating characteristic (ROC) and precision-recall curves55 as
well as calibration tables. Performance metrics requiring cut-
points (e.g., PPV, sensitivity, calibration tables) used cut-points
defined in the training data to reflect the real-life situation in
which deploying a model in a health care system requires pre-
specifying cut-points to categorize high-risk visits.
We also calculated all performance metrics in subgroups

defined by race, Hispanic ethnicity, and sex to compare model
performance across subgroup categories. Self-reported race was

extracted from electronic health records. This patient-reported
information is usually collected at an initial primary care visit by
clinic staff. Possible race categories included: American Indian/
Alaska Native, Asian, Black/African American, Native Hawaiian/
Pacific Islander, or white. Individuals who selected multiple
races contributed to estimates of performance for all racial
groups identified and individuals with missing race information
were included in a group together (unknown race). Individuals
could have missing information on race because they had not
had a clinic visit in which this information was collected, they
were not asked, or they selected to not provide this information.
Hispanic ethnicity was also extracted from electronic health
records and treated separately from race, except for defining a
non-Hispanic white subgroup. The non-Hispanic white sub-
group only included visits from individuals who selected
their race as white and did not select Hispanic ethnicity.
Performance in the Hispanic subgroup included all individuals
reporting this ethnicity, regardless of the race they selected.
Information on sex was extracted from health systems records
and at the time of this data pull, most likely represents sex
assigned at birth.

Specifications for detailed temporal predictors
The unit of analysis for this work was an outpatient mental health
visit or a general medical visit associated with a mental health
diagnosis; we use the term “index visit” throughout to refer to the
visit for which the model is being used to estimate suicide attempt
risk in the following 30 or 90 days. Predictors are defined using
information from the 60 months prior to the index visit. This
section describes the detailed temporal predictors, that were
overviewed in the main text.
Three different model types were estimated in this work: two

non-parametric models (random forest and artificial neural
networks) and a parametric model (logistic regression with a
lasso shrinkage penalty). There are two key differences between
these modeling approaches:

1. Handling of interactions–A strength of random forests and
neural networks is their ability to find interactions to
improve prediction accuracy, whereas for a logistic regres-
sion model all interactions to be considered must be
specified prior to estimation.

2. Handling of missing data–In our setting, missing data
occurs when the value of a predictor depends on the
presence of a health care event, such as the presence of a
diagnosis code. For example, possible predictors may be
the number of depression diagnoses in the last year or the
date of the most recent depression diagnosis; both values
would be missing for someone who does not have any
prior depression diagnosis. In random forest methodology
missing values can be treated completely separately (i.e., a
potential data split could be presence or absence of a
diagnosis of depression) or be lumped with other
observed values (i.e., a potential data split could be those
with more than two prior depression diagnoses, with those
people who have no prior depression diagnoses being
grouped with those who have one prior depression
diagnosis). It is not clear whether individuals with no
diagnosis should be deemed “closer” to those individuals
with the lowest or the highest value on the predictors
scale. Thus, for many continuous-valued predictors with
the potential for missing data, two predictors were
created: one in which missing values were coded just
below the lowest end of the scale and another in which
missing values were coded slightly higher than the largest
value on the scale. In parametrizing the logistic regression
model, we addressed this missing data by integrating
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interactions into the modeling strategy, i.e., we estimated
coefficients related to timing and frequency of a predictor
only for those with that predicting event. For example, our
model estimated a coefficient for those individuals without
a depression diagnosis and then estimated a coefficient for
the number of prior depression diagnoses only among
those individuals with a depression diagnosis.

For these reasons (interactions and missing data), two different
predictor sets were created, one for the non-parametric approaches
and one for the parametric approach.
Here we outline how data gathered from the electronic health

records (EHRs) of individuals was used to construct the predictors
included in the analytic dataset for model building. We first
provide a brief overview of the data pulled from the EHR. We then
the describe analytic predictors created for estimating random
forests and artificial neural networks followed by a description of
the analytic predictors created for estimating penalized logistic
regression models, including information about interactions
considered in the screening process.
We first provide a brief summary of the data extracted from

EHR for the suicide risk prediction models. Sixty monthly
variables were defined for each measured type of diagnosis,
health care utilization, and filled prescription (i.e., dispensing).
Monthly EHR data were captured differently for diagnoses and
utilization than for prescriptions. Thus, Sections A.2 and A.3 have
four distinct subsections each. The first subsection is identical
in both Sections and describes demographic predictors. The
second subsection describes the predictors encompassing
diagnoses and utilization information, the third subsection
describes predictors based on filled prescriptions, and the fourth
subsection describes predictors based on patient health ques-
tionnaire (PHQ) responses. Section A.3, which describes the
predictor set for the logistic regression models includes a fifth
subsection, which describes interactions considered. Not all
patients have 60 months of health system enrollment preceding
the index visit. Number of months of prior enrollment is recorded
as a separate analytic predictor and months of prior enrollment is
incorporated in some of predictors described below. Note,
diagnoses occurring on the day of the index visit were not
included in any predictors calculated using past information.
When the phrase “last month” is used, it means the last month
excluding diagnoses on the index day.

Analytic variable (i.e., predictor) specifications for random
forests and neural networks
Predictors based on demographic information:

A01 Visit type (mental health [MH], general medicine).
A02 Age (in years).
A03 Sex (Male, Female, Unknown).
A04 Race (Asian, Black or African American, Native Hawaiian/

Pacific Islander, American Indian/Alaska Native, Multiple
races, Other race, Unknown, white).

A05 Indicator variable for Hispanic ethnicity.
A06 Number of months of prior enrollment.
A07 Months since first MH-related visit.
A08 Indicator for if census information was available at time

of visit.
A09 Categorical variable for census information not available, if

median household income < $25 K, if median household
income ≥ $25 K but < $40 K, or ≥ $40 K.

A10 Categorical variable for if census information not available,
if neighborhood <25% college-educated, neighborhood
≥25% college-educated.

A11 Type of insurance coverage (individual binary indicators (not
necessarily mutually exclusive as individuals can have multi-
ple coverage) for: Affordable Care Act, Medicaid, commercial,

private pay (e.g., individual/family coverage), state-subsidized,
self-funded, Medicare, high-deductible, other).

A12 Total Charlson score and each of the Charlson subitems.
Missing values set to −1, indicating a person did not have
any encounters in which to observe diagnoses during
1–365 days prior to visit.

Variables summarizing 60 months of information on diagnoses
and health care utilization.
We use X to denote each diagnosis or utilization type in the

descriptions below. We use “X” throughout to be consistent
and less repetitive, but it should always read “diagnosis or
utilization type X.”
For each of the following 25 categories, the following variables

were computed from EHR and insurance claims data:

● Diagnoses (18 in total): Depression, anxiety, bipolar, schizophre-
nia, other psychosis, dementia, attention deficit and hyperactiv-
ity disorder (ADHD), Autism spectrum disorder (ASD), personality
disorder, alcohol use disorder, drug use disorder, post-traumatic
stress disorder (PTSD), eating disorder, traumatic brain injury,
conduct/disruptive disorder, diabetes, asthma, pain diagnosis.

● Mental health-related utilization (3 types in total): Inpatient
encounters with a MH diagnosis, outpatient MH specialty
encounters, emergency department encounters with MH
diagnosis.

● Prior injury, (4 types in total): Any suicide attempt, laceration
suicide attempt, other violent suicide attempt, any injury/
poisoning diagnosis.

For the full list of ICD-9-CM and ICD-10-CM codes see:
www.github.com/MHResearchNetwork/more-srpm
Variables summarizing total count of days with X in specific

time periods:

D01 Total count of days with X in last 1 month.
D02 Total count of days with X in last 3 months.
D03 Total count of days with X in last 12 months.
D04 Total count of days with X in last 24 months.
D05 Total count of days with X in last 60 months.

Variables that describe the past “rate” of X:

D06 Total days with X in last 3 months divided by number of
months enrolled in those months.

D07 Total days with X in last 12 months divided by number of
months enrolled in those months.

D08 Total days with X in last 24 months divided by number of
months enrolled in those months.

D09 Total days with X in the past 60 months divided by number
of months enrolled in those months.

Variables capturing information on how recently X occurred:

D10 Most recent occurrence of X (months prior to visit). Those
who do not have X observed (ever), set value for most
recent occurrence to −5 months.

D11 Most recent occurrence of X (months prior to visit). Those
who do not have X observed (ever), set value for most
recent occurrence to 65 months.

D12 Most recent month for which X was not observed. Those
who do not have X observed (ever), set value for most
recent month without X to −5.

D13 Most recent month for which X was not observed. Those
who do not have X observed (ever), set value for most
recent month without X to 65.

Variables describing earliest occurrence of X:

D14 Earliest occurrence of X (months prior to visit). Those who
do not have X observed (ever), set value for most recent
occurrence to −5 months.
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D15 Earliest occurrence of X (months prior to visit). Those who
do not have X observed (ever), set value for most recent
occurrence to 65 months.

D16 Difference between the earliest month and most recent
month with occurrence of X. Those with only 1 occurrence
set difference to 0. Those who do not have X observed
(ever), set difference to −5.

D17 Difference between the earliest month and most recent
month with occurrence of X. Those with only 1 occurrence
set difference to 0. Those who do not have X observed
(ever), set difference to 65.

Variables describing trend in X over time:

D18 (# of months with X) × [(difference between the earliest
month and most recent month with X]+ 1). Those who do
not have X observed (ever) or only have one occurrence, set
value to 0.

D19 Maximum # of days with X in any month minus the
minimum count of days with X in any month.

D20 Maximum # of days with X in any month.
D21 Number of months in which days with X exceeds Y, where

Y is the entire visit sample’s average monthly days with X.
Calculate Y by averaging over all months with at
least one X.

D22 Number of months in which days with X exceeds Y, where
Y is person’s average monthly days with X as of this visit.
Only consider X that occurred while person was enrolled. If
X not observed while enrolled, set to −5.

D23 Number of months in which days with X exceeds Y, where
Y is person’s average monthly days with X as of this visit.
Only consider X that occurred while person was enrolled
prior to visit. If X was not observed during that time,
set to 65.

D24 Proportion of months enrolled in which days with X
exceeds Y, where Y is entire visit sample’s average
monthly days with X. Calculate Y by averaging over all
months with at least one X.

D25 Proportion of months enrolled in which days with X
exceeds Y, where Y is person’s average monthly days with
X as of this visit. Only consider X that occurred while
person was enrolled prior to visit up to the full past
60 months.

D26 Total days with X in last month minus monthly average
for prior 2–12 months. Only consider X that occurred
while person was enrolled prior to visit. If not enrolled
≥2 months, set to −5.

D27 Monthly average of days with X in last 2 months minus
monthly average over prior 3–12 months. Only consider X
that occurred while person was enrolled prior to visit. If
not enrolled ≥3 months, set to −5.

D28 Monthly average of days with X in last 3 months minus
monthly average over prior 4–12 months. Only consider X
that occurred while person was enrolled prior to visit. If
not enrolled ≥4 months, set to −5.

Variables describing monthly occurrence of X in specific time
periods:

D29 Number of months with X in last 3 months.
D30 Number of months with X in last 6 months.
D31 Number of months with X in last 12 months.
D32 Number of months with X in last 24 months.
D33 Number of months with X in last 60 months.

Variables describing monthly maxes:

D34 Most recent month in which the maximum (over all
60 months) number of days with X in a month occurred.
Use most recent month in case of ties. If X was never
observed, assign −5.

D35 Most recent month in which the maximum (over all
60 months) number of days with X in a month occurred.
Use most recent month in case of ties. If X was never
observed, assign 65.

Variables describing minimum monthly count of X specific time
periods:

D36 Minimum monthly count of days with X in last 3 months.
D37 Minimum monthly count of days with X in last 12 months.
D38 Minimum monthly count of days with X in last 24 months.
D39 Minimum monthly count of days with X in last 60 months.
D40 Most recent month in which the minimum (over all

60 months) number of days with X in a month occurred.
Use most recent month in case of ties. If X was never
observed, assign 0.

Primary reason for MH-related visits. Only calculated for the 18
aforementioned MH diagnosis categories (i.e., not encounters or
self-inflicted injury).

D41 Proportion of MH-related visits associated with X during
last 1 month, calculated as days with X in last 1 month
divided by maximum number of days with any particular
diagnosis in last 1 month. If no MH diagnoses in last
1 month, set to −1.

D42 Proportion of MH-related visits associated with X during last
3 months, calculated as days with X in last 3 months divided
by maximum number of days with any particular diagnosis in
last 3 months. If no MH diagnoses in last 3 months, set to −1.

D43 Proportion of MH-related visits associated with X during last
12 months, calculated as days with X in last 12 months
divided by maximum number of days with any particular
diagnosis in last 12 months. If no MH diagnoses in last
12 months, set to −1.

D44 Proportion of MH-related visits associated with X during last
24 months, calculated as days with X in last 24 months
divided by maximum number of days with any particular
diagnosis in last 24 months. If no MH diagnoses in last
24 months, set to −1.

D45 Proportion of MH-related visits associated with X during last
60 months, calculated as days with X in last 60 months divided
by maximum number of days with any particular diagnosis in
last 60months. If noMH diagnoses in last 60months, set to−1.

Variables summarizing 60 months of information on prescrip-
tion medication fills.
In this section, we use “X” throughout to be consistent and less

repetitive, but it should always read “one or more dispensings of
prescription drug type X.”
We excluded medications dispensed on the day of the visits in

our data pull as information around timing is not sufficient to
evaluate if the medication was dispensed before the visit or
prescribed during the visit and picked up after the visit finished.
We recognize that the days’ supply variable is not ideal but
hopefully still informative in this data set.
For each of the following 8 prescription drug types, each of the

following variables were computed: antidepressant, benzodiaze-
pine, hypnotic, second generation antipsychotic, first generation
antipsychotic, stimulants, lithium, and anticonvulsants. For the full
list of medications used in each category see: https://github.com/
MHResearchNetwork/more-srpm
Variables summarizing total number (#) of months with X in

specific time periods:

R01 Binary variable indicating whether X occurred in last
1 month.

R02 # of months with X in last 3 months.
R03 # of months with X in last 12 months.
R04 # of months with X in last 24 months.
R05 # of months with X in last 60 months.
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Variables describing rate of X in specific time periods while
enrolled:

R06 # of months with X in last 3 months divided by # of months
enrolled in last 3 months.

R07 # of months with X in last 12 months divided by # of months
enrolled in last 12 months.

R08 # of months with X in last 24 months divided by # of months
enrolled in last 24 months.

R09 # of months with X in last 60 months divided by # of months
enrolled in last 60 months.

Variables describing total days’ supply of X dispensed in specific
time periods. Missing days supply will be treated as 0 (i.e., ignored)
in all sums.

R10 Total days’ supply of X dispensed in last 1 month.
R11 Total days’ supply of X dispensed in last 3 months.
R12 Total days’ supply of X dispensed in last 12 months.
R13 Total days’ supply of X dispensed in last 24 months.
R14 Total days’ supply of X dispensed in last 60 months.

Variables describing “rate” of days’ supply of X in specific time
periods while enrolled. Missing days supply will be treated as 0
(i.e., ignored) in all sums.

R15 Days’ supply of X dispensed in last 3 months divided by # of
months enrolled in last 3 months.

R16 Days’ supply of X dispensed in last 12 months divided by #
of months enrolled in last 12 months.

R17 Days’ supply of X dispensed in last 24 months divided by #
of months enrolled in last 24 months.

R18 Days’ supply of X dispensed sin last 60 months divided by #
of months enrolled in last 60 months.

Variables describing timing of X:

R19 Most recent month with X; for those who do not have X
(ever), set value for most recent month with X to −5.

R20 Most recent month with X; for those who do not have X
(ever), set value for most recent month with X to 65.

R21 First observed month with X; for those who do not have X
(ever), set value for most recent month with X to −5.

R22 First observed month with X; for those who do not have X
(ever), set value for most recent month with X to 65.

Information on days’ supply of most recent month with X:

R23 Binary indicator for if the person is likely to have drugs on
hand the day of the index visit, calculated as days’ supply of
most recent month with X divided by 30.4375 minus the #
of months ago X occurred. (Yes, this will be a bit crude, but
hopefully it will have some predictive power).

R24 Days’ supply of most recent month with X. Those who do not
have X (ever), set days’ supply to 0 for those with missing or
invalid (i.e., negative) days’ supply values, also set them to zero.

Variables summarizing PHQ responses collected at prior visits or
on the day of the index visit.
PHQ information on day of visit:

P01 PHQ-8 total score on day of visit. If 5+ items are present, set
total score to average of those items multiplied by 8. If <5
items are present, set to −5.

P02 PHQ-8 total score on day of visit. If 5+ items are present, set
total score to average of those items multiplied by 8. If <5
items are present, set to 35.

P03 PHQ item #9 score at visit. If missing, set to −5.
P04 PHQ item #9 score at visit. If missing, set to 10.

Prior PHQ item #9 information.

P05 Highest prior PHQ item #9 score. If no prior PHQ item #9 s,
set to −5.

P06 Highest prior PHQ item #9 score. If no prior PHQ item #9 s,
set to 10.

P07 Number of months (continuous-valued, days / 30.4375) ago
an individual had this maximum PHQ item #9 recorded. If
never, set to −5.

P08 Number of months (continuous-valued, days / 30.4375) ago
an individual had this maximum PHQ item #9 recorded. If
never, set to 65.

P09 Number of prior PHQ item #9 s recorded. If none, set to 0.
P10 Number of months (continuous-valued, days / 30.4375) ago

an individual last had PHQ item #9 recorded (regardless of
its value). If never, set to −5.

P11 Number of months (continuous-valued, days / 30.4375) ago
an individual last had PHQ item #9 recorded (regardless of
its value). If never, set to 65.

Information about prior recorded PHQ item #9 scores of specific
values. Let Y be the PHQ item #9 score that can take on the values
0, 1, 2, and 3.

P12 Number of prior recorded PHQ item #9 scores of Y. If none,
set to 0.

P13 Number of prior recorded PHQ item #9 scores of Y while
enrolled, divided by number of months enrolled. If none,
set to 0.

P14 Number of recorded PHQ item #9 scores of Y in last
1 month. If none, set to 0.

P15 Number of recorded PHQ item #9 scores of Y in last
3 months. If none, set to 0.

P16 Number of recorded PHQ item #9 scores of Y in last
12 months. If none, set to 0.

P17 Number of recorded PHQ item #9 scores of Y in last
24 months. If none, set to 0.

P18 Number of recorded PHQ item #9 scores of Y in last
60 months. If none, set to 0.

P19 Number of recorded PHQ item #9 scores of Y divided by
number of recorded PHQ item #9 scores. If none, set to 0.

P20 Number of months (continuous-valued) ago most recent
PHQ item #9 score of Y recorded. If never, set to −5.

P21 Number of months (continuous-valued) ago most recent
PHQ item #9 score of Y recorded. If never, set to 65.

Information about prior recorded PHQ-8 total scores:

P22 Highest prior observed PHQ-8 total score in past 1 year. If no
prior PHQ-8 recorded, set to −5.

P23 Highest prior observed PHQ-8 total score in past 1 year. If no
prior PHQ-8 recorded, set to 35.

P24 Highest prior observed PHQ-8 total score in past 2 years. If
no prior PHQ-8 recorded, set to −5.

P25 Highest prior observed PHQ-8 total score in past 2 years. If
no prior PHQ-8 recorded, set to 35.

P26 Highest prior observed PHQ-8 total score in past 5 years. If
no prior PHQ-8 recorded, set to −5.

P27 Highest prior observed PHQ-8 total score in past 5 years. If
no prior PHQ-8 recorded, set to 35.

P28 Number of prior recorded PHQ-8 scores above 10. If no prior
recorded PHQ-8, set to 0.

P29 Number of months (continuous-valued, days / 30.4375) ago
an individual had PHQ-8 score above 10. If never, set to −5.

P30 Number of months (continuous-valued, days / 30.4375)
ago an individual had PHQ-8 score above 10. If never,
set to 65.

P31 Number prior recorded PHQ-8 scores above 20. If no prior
recorded PHQ-8, set to 0.

P32 Number of months (continuous-valued) ago an individual
had PHQ-8 score above 20. If never, set to −5.

P33 Number of months (continuous-valued) ago an individual
had PHQ-8 score above 20. If never, set to 65.

S.M. Shortreed et al.

17

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)    47 



Analytic variable (i.e., predictor) specifications for logistic
regression (with LASSO)
Predictors based on demographic information:

A01 Visit type (MH, general medicine).
A02 Age (in years).
A03 Sex (Male, Female, Unknown).
A04 Race (Asian, Black or African American, Native Hawaiian/

Pacific Islander, American Indian/Alaska Native, Multiple
races, Other race, Unknown, white).

A05 Indicator variable for Hispanic ethnicity.
A06 Number of months of prior enrollment.
A07 Months since first MH-related visit.
A08 Indicator for if census information was available at time

of visit.
A09 Categorical variable for census information not available, if

median household income < $25 K, if median household
income ≥ $25 K but < $40 K, or ≥ $40 K.

A10 Categorical variable for if census information not available,
if neighborhood <25% college-educated, neighborhood
≥25% college-educated

A11 Type of insurance coverage (individual binary indicators (not
necessarily mutually exclusive as individuals can have multi-
ple coverage) for: Affordable Care Act, Medicaid, commercial,
private pay (e.g., individual/family coverage), state-subsi-
dized, self-funded, Medicare, high-deductible, other).

A12 Total Charlson score and each of the Charlson subitems.
Missing values set to−1, indicating a person did not have any
encounters in which to observe diagnoses during 1–365 days
prior to visit.

Variables summarizing 60 months of information on diagnoses
and utilization.
We use X to denote each diagnosis or utilization type in the

descriptions below. We use “X” throughout to be consistent and
less repetitive, but it should always read “diagnosis or utilization
type X.”
For each of the following 25 categories, the following variables

were computed from EHR and insurance claims data:

● Diagnoses (18 in total): Depression, anxiety, bipolar, schizo-
phrenia, other psychosis, dementia, attention deficit and
hyperactivity disorder (ADHD), Autism spectrum disorder
(ASD), personality disorder, alcohol use disorder, drug use
disorder, post-traumatic stress disorder (PTSD), eating dis-
order, traumatic brain injury, conduct/disruptive disorder,
diabetes, asthma, pain diagnosis.

● Mental health-related utilization (3 types in total): Inpatient
encounters with a MH diagnosis, outpatient MH specialty
encounters, emergency department encounters with MH
diagnosis.

● Prior injury, (4 types in total): Any suicide attempt, laceration
suicide attempt, other violent suicide attempt, any injury/
poisoning diagnosis.

For the full list of ICD-9-CM and ICD-10-CM codes see: https://
github.com/MHResearchNetwork/more-srpm
Variables summarizing presence/absence of any relevant diag-

noses (from the 18 categories listed above) in specific time periods:

D01 Indicator of absence of any MH diagnosis in the last month
(i.e., 1 if no MH-related diagnosis in the last month,
otherwise 0).

D02 Indicator of absence of any MH diagnosis in the last
3 months (i.e., 1 if no MH-related diagnosis in the last
month, otherwise 0).

D03 Indicator of absence of any MH diagnosis in the last
12 months (i.e., 1 if no MH-related diagnosis in the last
month, otherwise 0).

D04 Indicator of absence of any MH diagnosis in the last
24 months (i.e., 1 if no MH-related diagnosis in the last
month, otherwise 0).

D05 Indicator of absence of any MH diagnosis in the last
60 months (i.e., 1 if no MH-related diagnosis in the last
month, otherwise 0).

Variables summarizing total count of days with X in specific
time periods:

D06 Total count of days with X in last 1 month.
D07 Total count of days with X in last 3 months.
D08 Total count of days with X in last 12 months.
D09 Total count of days with X in last 24 months.
D10 Total count of days with X in last 60 months.
D11 Indicator of absence of diagnosis X at any time in last

60 months i.e., 1 if no diagnosis code found in the last
60 months, otherwise 0.

Variables that describe the past “rate” of X:

D12 Total days with X in last 3 months divided by number of
months enrolled in those months.

D13 Total days with X in last 12 months divided by number of
months enrolled in those months.

D14 Total days with X in last 24 months divided by number of
months enrolled in those months.

D15 Total days with X in the past 60 months divided by number
of months enrolled in those months.

Variables capturing information on how recently X occurred:

D16 Most recent occurrence of X (months prior to visit) only for
those people with a diagnosis of X at some point,
otherwise 0.

D17 Most recent month for which X was not observed only for
those people with a diagnosis of X at some point,
otherwise 0.

Variables describing earliest occurrence of X:

D18 Earliest occurrence of X (months prior to visit) only for those
people with a diagnosis of X at some point, otherwise 0.

D19 Difference between the earliest month and most recent
month with occurrence of X only for those people with a
diagnosis of X at some point, otherwise 0.

Variables describing trend in X over time:

D20 (# of months with X) × [(difference between the earliest
month and most recent month with X]+ 1) only for those
people with a diagnosis of X at some point, otherwise 0.

D21 Maximum # of days with X in any month minus the
minimum count of days with X in any month only for
those people with a diagnosis of X at some point,
otherwise 0.

D22 Maximum # of days with X in any month only for those
people with a diagnosis of X at some point, otherwise 0.

D23 Number of months in which days with X exceeds Y,
where Y is the entire visit sample’s average monthly days
with X only for those people with a diagnosis of X at
some point, otherwise 0. Calculate Y by averaging over all
months with at least one X.

D24 Number of months in which days with X exceeds Y,
where Y is person’s average monthly days with X as of
this visit only for those people with a diagnosis of X at
some point, otherwise 0.

D25 Proportion of months enrolled in which days with X
exceeds Y, where Y is entire visit sample’s average
monthly days with X only for those people with a
diagnosis of X at some point, otherwise 0. Calculate Y by
averaging over all months with at least one X.
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D26 Proportion of months enrolled in which days with X exceeds
Y, where Y is person’s average monthly days with X as of this
visit. Only consider X that occurred while person was
enrolled prior to visit up to the full past 60 months.

D27 Total days with X in last month minus monthly average for
prior 2–12 months. Only consider X that occurred while
person was enrolled prior to visit. If not enrolled ≥2 months,
set to 0.

D28 Monthly average of days with X in last 2 months minus
monthly average over prior 3–12 months. Only consider X
that occurred while person was enrolled prior to visit. If not
enrolled ≥3 months, set to 0.

D29 Monthly average of days with X in last 3 months minus
monthly average over prior 4–12 months. Only consider X
that occurred while person was enrolled prior to visit. If not
enrolled ≥4 months, set to 0.

Variables describing monthly occurrence of X in specific time
periods:

D30 Number of months with X in last 3 months.
D31 Number of months with X in last 6 months.
D32 Number of months with X in last 12 months.
D33 Number of months with X in last 24 months.
D34 Number of months with X in last 60 months.

Variables describing monthly maxes:

D35 Most recent month in which the maximum (over all
60 months) number of days with X in a month occurred
only for those people with a diagnosis of X at some point,
otherwise 0. Use most recent month in case of ties.

Variables describing minimum monthly count of X specific time
periods.

D36 Minimum monthly count of days with X in last 3 months.
D37 Minimum monthly count of days with X in last 12 months.
D38 Minimum monthly count of days with X in last 24 months.
D39 Minimum monthly count of days with X in last 60 months.
D40 Most recent month in which the minimum (over all

60 months) number of days with X in a month occurred.
Use most recent month in case of ties. If X was never
observed, assign 0.

Primary reason for MH-related visits.
Only calculated for the 18 aforementioned MH diagnosis

categories (i.e., not encounters or self-harm injury).

D41 Proportion of MH-related visits associated with X during last
1 month, calculated as days with X in last 1 month divided
by maximum number of days with any particular diagnosis
in last 1 month. If no MH diagnoses in last 1 month, set to 0.

D42 Proportion of MH-related visits associated with X during
last 3 months, calculated as days with X in last 3 months
divided by maximum number of days with any particular
diagnosis in last 3 months. If no MH diagnoses in last
3 months, set to 0.

D43 Proportion of MH-related visits associated with X during last
12 months, calculated as days with X in last 12 months
divided by maximum number of days with any particular
diagnosis in last 12 months. If no MH diagnoses in last
12 months, set to 0.

D44 Proportion of MH-related visits associated with X during last
24 months, calculated as days with X in last 24 months
divided by maximum number of days with any particular
diagnosis in last 24 months. If no MH diagnoses in last
24 months, set to 0.

D45 Proportion of MH-related visits associated with X during last
60 months, calculated as days with X in last 60 months
divided by maximum number of days with any particular
diagnosis in last 60 months. If no MH diagnoses in last
60 months, set to 0.

Variables summarizing 60 months of information on
prescription fills.
In this section, we use “X” throughout to be consistent and less

repetitive, but it should always read “one or more dispensings of
prescription drug type X.”
We excluded medications dispensed on the day of the visits in

our data pull as information around timing is not sufficient to
evaluate if the medication was dispensed before the visit or
prescribed during the visit and picked up after the visit finished.
We recognize that the days’ supply variable is not ideal but
hopefully still informative in this data set.
For each of the following 8 prescription drug types, each of the

following variables were computed: antidepressant, benzodiaze-
pine, hypnotic, second generation antipsychotic, first generation
antipsychotic, stimulants, lithium, and anticonvulsants.
For the full list of medications used in each category see:

https://github.com/MHResearchNetwork/more-srpm
Variables summarizing total number (#) of months with X in

specific time periods.

R01 Binary variable indicating whether X occurred in last
1 month.

R02 # of months with X in last 3 months.
R03 # of months with X in last 12 months.
R04 # of months with X in last 24 months.
R05 # of months with X in last 60 months.
R06 Indicator for absence of X anytime in the last 60 months (i.e.,

equal to one if no Rx fill for drug type X, otherwise 0).

Variables describing rate of X in specific time periods while
enrolled:

R07 # of months with X in last 3 months divided by # of months
enrolled in last 3 months.

R08 # of months with X in last 12 months divided by # of months
enrolled in last 12 months.

R09 # of months with X in last 24 months divided by # of months
enrolled in last 24 months.

R10 # of months with X in last 60 months divided by # of months
enrolled in last 60 months.

Variables describing total days’ supply of X dispensed in specific
time periods.
Missing days supply will be treated as 0 (i.e., ignored) in all

sums.

R11 Total days’ supply of X dispensed in last 1 month.
R12 Total days’ supply of X dispensed in last 3 months.
R13 Total days’ supply of X dispensed in last 12 months.
R14 Total days’ supply of X dispensed in last 24 months.
R15 Total days’ supply of X dispensed in last 60 months.

Variables describing “rate” of days’ supply of X in specific time
periods while enrolled.
Missing days supply will be treated as 0 (i.e., ignored) in

all sums.

R16 Days’ supply of X dispensed in last 3 months divided by # of
months enrolled in last 3 months.

R17 Days’ supply of X dispensed in last 12 months divided by #
of months enrolled in last 12 months.

R18 Days’ supply of X dispensed in last 24 months divided by #
of months enrolled in last 24 months.

R19 Days’ supply of X dispensed sin last 60 months divided by #
of months enrolled in last 60 months.

Variables describing timing of X:

R20 Most recent month with X for those who have had a script
for X ever, otherwise 0.

R21 First observed month with X for those who have had a script
for X ever, otherwise 0.
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Information on days’ supply of most recent month with X:

R22 Binary indicator for if the person is likely to have drugs on
hand the day of the index visit, calculated as days’ supply of
most recent month with X divided by 30.4375 minus the #
of months ago X occurred.

R23 Days’ supply of most recent month with X. Those who do
not have X (ever), set days’ supply to 0.

Variables summarizing PHQ scores collected at prior visits.
PHQ information on day of visit:

P01 Indicator for if PHQ-8 missing on the day.
P02 Indicator for if PHQ item 9 missing on the day.
P03 PHQ-8 total score on day of visit. If 5+ items are present, set

total score to average of those items multiplied by 8. If <5
items are present, set to 0.

P04 PHQ item 9 score at visit. If missing, set to 0.

Prior PHQ item 9 information:

P05 Indicator for if no prior PHQ item 9 score recorded (i.e., 1 if
no prior PHQ item 9 score recorded, if there is one recorded
then set to 0).

P06 Highest prior PHQ item 9 score. If no prior PHQ item 9 s,
set to 0.

P07 Number of months (continuous-valued, days / 30.4375) ago
an individual had this maximum PHQ item 9 recorded. If
never, set to 0.

P08 Number of prior PHQ item 9 s recorded. If none, set to 0.
P09 Number of months (continuous-valued, days / 30.4375) ago

an individual last had PHQ item 9 recorded (regardless of its
value). If never, set to 0.

Information about prior recorded PHQ item 9 scores of specific
values. Let Y be the PHQ item#9 score that can take on the values
0, 1, 2, and 3.

P10 Number of prior recorded PHQ item 9 scores of Y. If none,
set to 0.

P11 Number of prior recorded PHQ item 9 scores of Y while
enrolled, divided by number of months enrolled. If none,
set to 0.

P12 Number of recorded PHQ item 9 scores of Y in last 1 month.
If none, set to 0.

P13 Number of recorded PHQ item 9 scores of Y in last
3 months. If none, set to 0.

P14 Number of recorded PHQ item 9 scores of Y in last
12 months. If none, set to 0.

P15 Number of recorded PHQ item 9 scores of Y in last
24 months. If none, set to 0.

P16 Number of recorded PHQ item 9 scores of Y in last
60 months. If none, set to 0.

P17 Number of recorded PHQ item 9 scores of Y divided by
number of recorded PHQ item 9 scores. If none, set to 0.

P18 Number of months (continuous-valued) ago most recent
PHQ item 9 score of Y recorded. If never, set to 0.

Information about prior recorded PHQ-8 total scores:

P19 Highest prior observed PHQ-8 total score in past 1 year. If no
prior PHQ-8 recorded, set to 0.

P20 Highest prior observed PHQ-8 total score in past 2 years. If
no prior PHQ-8 recorded, set to 0.

P21 Highest prior observed PHQ-8 total score in past 5 years. If
no prior PHQ-8 recorded, set to 0.

P22 Number of prior recorded PHQ-8 scores above 10. If no prior
recorded PHQ-8, set to 0.

P23 Indicator for if there was no prior PHQ-8 score above 10 (i.e.,
1 if had a PHQ-8 above 10, otherwise, including if no prior
PHQ-8, 0).

P24 Number of months (continuous-valued, days / 30.4375) ago
an individual had PHQ-8 score above 10. If never, set to 0.

P25 Number prior recorded PHQ-8 scores above 20. If no prior
recorded PHQ-8, set to 0.

P26 Indicator for if there was no prior PHQ-8 score above 20 (i.e.,
1 if had a PHQ-8 above 20, otherwise, including if no prior
PHQ-8, 0).

P27 Number of months (continuous-valued) ago an individual
had PHQ-8 score above 20. If never, set to 0.

Prespecified interactions for logistic regression models used in
screening.
There are already some interactions baked into the variable

descriptions above. Here we describe additional interactions that
were considered in the lasso model. We created predictors for
interactions between clinical information and five variables: age,
race and ethnicity, sex, PHQ item 9 response on the day, and prior
suicide attempt. In each of the subsections below we describe the
clinical information we consider as possible interactions in the
logistic regression prediction model.
Due to computational limitations, we were not able to put all

interactions into the final model for consideration. We used a
screening strategy to whittle these variables down to the number of
predictors consider for estimating the lasso model. Below each of the
possible interactions are listed by the screening models used. Each
screening model was run with lasso with a small tuning parameter to
shrink the number of predictors to around 100 predictors per
screening model. All of the predictors that made it through this
round of screening were then put into the final predictor list for
consideration in the final logistic regression with lasso, i.e., these
variables were put through a further variable selection process.
Interactions with age groups (in years): 11–17,18–25, 26–35,

36–45, 46–55, 56–65, 66+

a. Age screening model 1 interacted age categories with:

a. Diagnosis information: D01, D02, D03, D04, D05, D06,
D08, D11, D12, D14,

b. Age screening model 2 interacted age categories with:

a. Prior suicide attempt information: D01, D02, D03, D04,
D05, D06, D07, D08, D09, D10, D11, D12, D13

b. PHQ-8 total score on the day: P01 and P03
c. Prior PHQ item 9 information: P05, P06, P07, P08, P09,

P10, P12, P13, P14, P15, P16, P17, P18
d. PHQ item 9 information on the day: P02, P04
e. Diagnosis timing information: D11, D30, D31, D32, D33,

D34, D35

Interactions with race and ethnicity

1. Race and ethnicity screening model 1 interacted race and
ethnicity with:

a. Basic diagnosis information: D01, D02, D03, D04, D05,
D06, D08, D11, D12, D14

2. Race and ethnicity screening model 2 interacted race and
ethnicity with:

a. Medication information: R01 – R22

3. Race and ethnicity screening model 3 interacted race and
ethnicity with:

a. Prior suicide attempt information: D01, D02, D03, D04,
D05, D06, D07, D08, D09, D10, D11, D12, D13

b. PHQ-8 total score on the day: P01 and P03
c. Prior PHQ item 9 information: P05, P06, P07, P08, P09,

P10, P12, P13, P14, P15, P16, P17, P18
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d. PHQ item 9 information on the day: P02, P04
e. Diagnosis timing information: D11, D30, D31, D32, D33,

D34, D35

Interactions with sex was done with one screening model and
included interactions with:

a. Diagnosis information: D01, D02, D03, D04, D05, D06, D07,
D08, D11, D12, D14, D30, D31, D32, D33, D34, D35.

b. Prior suicide attempt information: D01, D02, D03, D04, D05,
D06, D07, D08, D09, D10, D11, D12, D13.

c. PHQ-8 total score on the day: P01 and P03.
d. Prior PHQ item 9 information: P05, P06, P07, P08, P09, P10,

P12, P13, P14, P15, P16, P17, P18.
e. PHQ item 9 information on the day: P02, P04.

Interactions with PHQ item 9 response on the day was complete
in one screening model and included interactions with:

a. Diagnosis: D01, D02, D03, D04, D05, D06, D07, D08, D11,
D12, D14, D26, D27, D28, D29, D30, D31.

b. Prior suicide attempt information: D01, D02, D03, D04, D05,
D06, D07, D08, D09, D10, D11, D12, D13.

c. Prior PHQ item 9 information: P05, P06, P07, P08, P09, P10,
P12, P13, P14, P15, P16, P17, P18.

Interactions with known prior suicide attempt (any known
suicide attempt) were fit in one screening model and included
interactions with:

a. Prior PHQ item 9 information: P05, P06, P07, P08, P09, P10,
P12, P13, P14, P15, P16, P17, P18.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets generated and analyzed during this study are not publicly available
because they contain detailed information from the electronic health records in the
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code to evaluate model performance is available at: https://github.com/
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